
Exam Prep AZ-204
Compiled by Rob Das, in 2021

Last Updated in 2025

Forward

This document contains my study notes for the Microsoft certification exam, “AZ-204 Developing Solutions for Microsoft

Azure”. As I proceed through my career as an Azure developer, my study notes serve as a single point of reference to

refresh my memory on the exam topics as needed. These study notes are my textbook.

I have made these study notes publicly and freely available to share with everyone. The study notes were my main tool

for passing the exam and I hope they will help you to do the same.

I compiled these study notes in 2021 and used them to pass the certification exam for Microsoft Certified: Azure

Developer Associate in late 2021. To create these study notes, I began by downloading the complete list of skills

measured for AZ-204 in 2021, which is published by Microsoft at

https://learn.microsoft.com/en-us/certifications/resources/study-guides/AZ-204

The list of skills measured was then used to create the table of contents for this document. I then studied each skill one-

by-one and took extensive study notes. The notes were collected from various sources including all the recommended

Microsoft Learning Paths, Microsoft online documentation, you tube videos, and online courses from various sites for

which I had subscriptions. The notes were compiled using screen shots, copy-and-paste, and my own explanations as my

knowledge and understanding grew. I make no claim as to the accuracy and currency of these study notes, they are

simply the work of an enthusiastic student (myself) in the process of learning.

I have no wish to profit from these study notes, I just want to share them with others who might find them useful. As

such, I will not be making any efforts to update these study notes as additional topics are added by Microsoft each year.

I hope these study notes will make an excellent starting point, but you will have to check the current list of skills

measured to find out what skills have been changed or added.

Good Luck and Happy Examing! 😊

Rob Das,

Certified Azure Developer,

Owner/Manager, DTEK Consulting Services Ltd.

http://azuredev.ca

21 April, 2023

https://learn.microsoft.com/en-us/certifications/resources/study-guides/AZ-204
http://azuredev.ca/

Table of Contents
Forward ... 1

Study Notes for AZ-204 (circa 2021) ... 3

Top Level Skill Domains ... 3

1. Develop Azure compute solutions (25-30%)... 3

1.1 Implement IaaS solutions .. 3

1.2 Create Azure App Service Web Apps .. 12

1.3 Implement Azure functions... 24

2. Develop for Azure storage (15-20%) ... 33

2.1 Develop solutions that use Cosmos DB storage ... 34

2.2 Develop solutions that use blob storage .. 42

3. Implement Azure security (20-25%) ... 52

3.1 Implement user authentication and authorization .. 52

3.2 Implement secure cloud solutions .. 62

4. Monitor, troubleshoot, and optimize solutions (15-20%) .. 72

4.1 Integrate caching and content delivery within solutions ... 72

4.2 Instrument solutions to support monitoring and logging... 77

5. Azure services and third-party services (15-20%) ... 83

5.1 Develop an App Service Logic App – Out of scope .. 83

5.2 Implement API Management .. 83

5.3 Develop event-based solutions ... 94

5.4 Develop message-based solutions .. 98

Appendices .. 106

Appendix 1 – Deleted Topics (out of scope as of March 26, 2021) .. 106

Appendix 2 – Command-Line commands ... 114

Appendix 3 – ARM templates (Infrastructure as Code) .. 124

Appendix 4 – Policies .. 130

Appendix 5 – Pricing Tiers (sku) .. 132

Appendix 6 – Code and C# Classes .. 134

Appendix 7 – Authentication .. 142

Appendix 8 – RESTful API .. 146

Appendix 9 – Study Notes for 2023 Renewal ... 147

Appendix 10 – Study Notes for 2024 Renewal ... 175

Appendix 11 – Study Notes for 2025 Renewal ... 213

Study Notes for AZ-204 (circa 2021)

Top Level Skill Domains

1. Develop Azure compute solutions (25-30%)

2. Develop for Azure storage (15-20%)

3. Implement Azure security (20-25%)

4. Monitor, troubleshoot, and optimize Azure solutions (15-20%)

5. Connect to and consume Azure services and third-party services (15-20%)

1. Develop Azure compute solutions (25-30%)

Azure compute is an on-demand service for running cloud-based applications. It provides computing resources via virtual

machines and containers. It also provides serverless computing to run apps without requiring setup or configuration of

infrastructure.

App Service hosts web apps, background applications,

mobile app backends, APIs

Azure Functions respond to events

Batch is a VM based, scalable job scheduler

Service Fabric uses containers to deploy microservice

architected applications

1.1 Implement IaaS solutions

• provision VMs

• configure, validate, and deploy ARM templates

• configure container images for solutions

• publish an image to the Azure Container Registry

• run containers by using Azure Container Instance

https://docs.microsoft.com/en-us/learn/paths/azure-administrator-prerequisites/

https://docs.microsoft.com/en-us/learn/modules/network-fundamentals/

https://docs.microsoft.com/en-us/learn/modules/network-fundamentals-2/

• Subnet

o logically segments the VNet using IP address ranges

o can further be subdivided into private and public subnet

o private subnet is isolated – blocked from the internet – but you can override using NAT

• Routing

o you cannot access routers directly in Azure but can you create routing rules in your VNet

o Azure automatically creates route tables for each subnet in order to manage traffic

• Network Security Group

o serves as firewall to protect virtual machines within VNet

o restricts inbound and outbound traffic based on IP address, port, and/or protocol

Provision VMs

Skill: provision VMs

https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-virtual-machines

https://docs.microsoft.com/en-us/azure/backup/backup-azure-vms-first-look-arm

To deploy (provision) VM’s you need:

• Storage account – with at least one virtual disk for hosting the base OS

• Virtual network (VNet)

• Network interface – to communicate on the network

• network security group (NSG)

• Public IP address – optional

https://docs.microsoft.com/en-us/learn/paths/azure-administrator-prerequisites/
https://docs.microsoft.com/en-us/learn/modules/network-fundamentals/
https://docs.microsoft.com/en-us/learn/modules/network-fundamentals-2/
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-virtual-machines
https://docs.microsoft.com/en-us/azure/backup/backup-azure-vms-first-look-arm

You also need to think about location, size, pricing, OS. You need to select Resource Group, Image (Windows or Linux)

 Azure Portal

Create a resource > Compute > choose template (ex. Win 2019 0r Ubuntu) > follow the wizard

Azure CLI

https://docs.microsoft.com/en-us/cli/azure/vm#az_vm_create

Create resource group and vm. Open port. Get public IP.

#create resource group

az group create \

 --name “test-rg” \

 --location “centralus”

#create win vm

az vm create \

 --resource-group “test-rg” \

 --name “win2016-vm” \

 --image “win2016datacenter” \

 --admin-username “robi” \

 --admin-password “aReallyGoodPasswordHere”

#create linux vm

az vm create \

 --resource-group “test-rg” \

 --name “linux-vm” \

 --image “UbuntuLTS” \

 --admin-username “robi” \

 --authentication-type “ssh” \

 --ssh-key-value ~/.ssh/id_rsa.pub

#open port

creates nsg, adds and applies rule to vm

az vm open-port \

 --resource-group “test-rg” \

 --name “win2016-vm” \

 --port “3389”

az vm open-port \

 --resource-group “test-rg” \

 --name “linux-vm” \

 --port “22”

#get public ip

az vm list-ip-addresses \

 --resource-group “test-rg” \

 --name “win2016-vm”

Powershell

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-powershell

New-AzResourceGroup `

-Name test-rg `

-Location "East US"

New-AzVm `

 -ResourceGroupName "test-rg" `

 -Name "win2016-vm" `

 -Image "Win2019Datacenter" `

 -Location "East US" `

 -VirtualNetworkName "test-wp1-eus-network" `

 -SubnetName "default" `

 -SecurityGroupName "test-wp1-eus-nsg" `

 -PublicIpAddressName "test-wp1-eus-pubip" `

 -OpenPorts 80,3389

Get-AzPublicIpAddress `

 -ResourceGroupName "test-rg" `

 -Name "win2016-vm"

https://docs.microsoft.com/en-us/cli/azure/vm#az_vm_create
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-powershell

 Programmatic API

You can interact with every type of resource in Azure programmatically, where the creation and management of VMs

form part of a larger application with complex logic.

Azure REST API

The Azure REST API provides developers with operations categorized by resource as well as the ability to create and

manage VMs. Operations are exposed as URIs with corresponding HTTP methods (GET, PUT, POST, DELETE, and PATCH)

and a corresponding response.

Azure Client SDK

The Azure Client SDK encapsulates the Azure REST API, making it much easier for developers to interact with Azure. The

Azure Client SDKs are available for a variety of languages and frameworks, including C#, Java, Node.js, PHP, Python,

Ruby, and Go.

Availability Set

https://docs.microsoft.com/en-us/learn/modules/configure-virtual-machine-availability/

An availability set is a logical feature used to ensure that a group of related VMs are deployed so that they aren't all

subject to a single point of failure and not all upgraded at the same time.

A fault domain is a physical group of hardware that shares a common set of hardware components, and that share a

single point of failure. You can think of it as a rack within an on-premises datacenter.

An update domain is a logical group of hardware that can undergo maintenance, or be rebooted at the same time.

By default, new VMs are locked down. Apps can make outgoing requests, but the only inbound traffic allowed is from

the virtual network and from Azure Load Balancer. To open ports (SSH, RDP, HTTP, FTP, etc.) two steps:

1. Create a network security group.

2. Create an inbound rule allowing traffic on the ports you need.

VMs – ARM Templates

Skill: configure, validate, and deploy ARM templates

https://docs.microsoft.com/en-gb/learn/paths/az-204-implement-iaas-solutions/

https://docs.microsoft.com/en-us/learn/modules/configure-virtual-machine-availability/
https://docs.microsoft.com/en-gb/learn/paths/az-204-implement-iaas-solutions/

https://docs.microsoft.com/en-us/learn/paths/deploy-manage-resource-manager-templates/

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-syntax

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-tutorial-create-first-

template?tabs=azure-powershell

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview

ARM template file structure:

schema the location of the JSON schema file that describes the version of the template
language and the structure of the JSON data

required

contentVersion the version of your template – to document significant changes and to ensure
you're deploying the right template

required

resources the actual items you want to deploy or update in a resource group or a subscription

required

apiProfile defines a collection of API versions for resource types

opt.

parameters define values that are provided during deployment – can be provided by a
parameter file, command-line parameters, or in Azure portal

opt.

variables define values that are used to simplify template language expressions

opt.

functions user-defined functions that are available within the template – simplify your
template when complicated expressions are used repeatedly

opt.

output the values that will be returned at the end of the deployment

opt.

In its simplest structure, a template has the following elements:

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",

 "contentVersion": "",

 "apiProfile": "",

 "parameters": { },

 "variables": { },

 "functions": [],

 "resources": [],

 "outputs": { }

}

ARM templates are JSON files that define the resources to deploy for your solution – for VMs, they are templates from

which to create an exact copy of a VM or to create and deploy specific configurations.

Create resource templates from the Automation section for a specific VM:

https://docs.microsoft.com/en-us/learn/paths/deploy-manage-resource-manager-templates/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-syntax
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-tutorial-create-first-template?tabs=azure-powershell
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-tutorial-create-first-template?tabs=azure-powershell
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview

You have the option to save the resource template for later use, or immediately deploy a new VM based on this

template. You can take that template and easily re-create multiple versions of your infrastructure, such as staging and

production. You can parameterize fields such as the VM name and load the template repeatedly, using different

parameters for each environment.

Exam Tip: Understand ARM template parameters and parameter files, functions, variables.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-syntax

https://docs.microsoft.com/en-us/learn/paths/deploy-manage-resource-manager-templates/

deploy an ARM template to Azure in one of the following ways:

• Deploy a local template

• Deploy a linked template

• Deploy in a continuous deployment pipeline

A deployment of Azure resources requires a resource group and an ARM template Json File. To deploy the template

defined in the Template file, use either the Azure CLI command az deployment group create or the Azure PowerShell

command New-AzResourceGroupDeployment.

CLI example

az deployment group create \

 --name blanktemplate \

 --resource-group myResourceGroup \

 --template-file "{provide-the-path-to-the-template-file}"

powershell example

New-AzResourceGroupDeployment `

 -Name {name of your resource group} `

 -Location "{location}"

Create Docker Images

Skill: configure container images for solutions

https://docs.microsoft.com/en-us/learn/modules/intro-to-docker-containers/

Container Image: A container image is a portable package that contains software (source-code, dependencies, libraries)

as a single binary deployable package. It's this image that, when built and run, becomes our container. It serves as the

deployment mechanism for your application. The term Container image is sometimes abbreviated to just image.

A container image is immutable. Once you've built a container image, it can't be changed. This is our guarantee that the

container image we use in production is the same image used in development and QA.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-syntax
https://docs.microsoft.com/en-us/learn/paths/deploy-manage-resource-manager-templates/
https://docs.microsoft.com/en-us/learn/modules/intro-to-docker-containers/

Container: A container is an isolated environment that allows us to run images. It’s a running instance of a container

image. Inside that container is a compiled, running instance of your application.

Azure Container Registry (ACR): is a centralized storage service based on the open source docker registry. It makes your

image accessible to all the servers that can execute your image. It allows you to build, store, and manage container

images. You can think of ACR as a storage and cataloging service.

Azure Container Instances (ACI): Azure service that allows us to run one or more containers in Azure with no servers or

infrastructures to manage. ACI serves as a container orchestrator that can pull down container images from ACR,

compile and run them as containers. You can think of ACI as a runtime environment.

Docker is a containerization platform used to develop, ship, and run containers.

Building a Container Image

A Dockerfile is a text file that contains the instructions we use to build and run a Docker image.

FROM defines a base container image used for subsequent

instructions in the docker file.

RUN executes a command inside the container. In the example, it

will create a directory named app inside the container image.

WORKDIR sets the working directory for any subsequent

instructions in this docker file.

COPY is used to copy application binaries into the container.

RUN executes scripts inside the container.

EXPOSE tells the container’s runtime which port the application in

the container is listening on.

ENTRYPOINT is used to define which script or binary to start when

the container is started from this container image. Inside the [] is

the command to run along with its parameters. Sometimes CMD is

used instead of ENTRYPOINT.

Using this example docker file in the current directory, we execute the docker build command:

docker build -t webappimage:v1 .

This builds the container image from the docker file that’s in the current directory, and name and tag the container

image with the name webappimage, and the tag v1.

To run an instance of this container image on the local host as a container:

docker run –name webapp –publish 8080:80 –detach webappimage:v1

The -publish specifies the port that the container is going to listen on, on the local machine, 8080, as well as the port

that the application is listening on, inside the container, 80.

With the container running, we can use curl to connect to the published port 8080.

curl http://localhost:8080

We can stop and remove the running webapp (the container):

docker stop webapp

docker rm webapp

Publish Image to Azure Container Registry (ACR)

Skill: publish an image to the Azure Container Registry

https://docs.microsoft.com/en-us/learn/modules/deploy-run-container-app-service/

First, we must create an ACR. To create an ACR, we can use Azure Portal, PowerShell, or Azure CLI. For example, using

CLI:

ACR_NAME=’demo-acr’

az acr create \

 --resource-group ‘test-rg’ \

 --name $ACR_NAME \

 --sku Standard

Azure Container Registry (ACR) is a centralized storage service making your image accessible to all the servers that can

execute your image. This makes your code independent from the servers and highly portable.

Note: this does not make the code live, it just puts in in a central place to make it available to the servers.

https://docs.microsoft.com/en-us/learn/modules/deploy-run-container-app-service/

To push your container image to your ACR registry:

1. Log in to your Azure subscription

az login

2. Log in to your registry

az acr login –-name $ACR_NAME

3. Tag the image that you want to upload to the registry - for example webappimage:v1

docker tag webappimage:v1 $ACR_NAME.azurecr.io/webappimage:v1

4. Push the image for example webappimage:v1

docker push $ACR_NAME.azurecr.io/webappimage:v1

Alternatively, you can push the image using ACR tasks:

az acr build –image “webappimage:v1-acr-task” –registry $ACR_NAME .

You can use ACR tasks to offload the build process of your application into Azure Container Registry. ACR tasks can be

triggered when your team commits code into source control.

Azure Container Instances – Running Containers

Skill: run containers by using Azure Container Instance

Before you can deploy your code to an Azure Container Instance or to a Web App, you need to set up access using

access keys. We need to enable access to the container registry itself. Typically, this is done by creating a service

principal. We need a container registry administrator user id and password. ACI will use this to pull down the container

image from ACR.

#deploy container into ACI

SERVER=$(az acr show –query loginServer)

az container create \

 --resource-group test-rg \

 --name “my-app” \

 --ports 80 \

 --image $SERVER/webappimage:v1

Once deployed, the app in the container will be running in ACI. Get the URL as follows:

URL=$(az container show --name ‘my-app’ --query ipAddress.fqdn)

echo $URL

To test the app, point your browser at this URL.

1.2 Create Azure App Service Web Apps

• create an Azure App Service Web App

• enable diagnostics logging

• deploy code to a web app

• configure web app settings including SSL, API, and connection strings

• implement autoscaling rules, including scheduled autoscaling, and autoscaling by

operational or system metrics

Azure App Service is a fully managed PaaS environment for hosting web applications, webapps-in-containers, mobile app

backends, and custom-made APIs.

When working in containers, be aware of these Docker environment variables for App Service:

WEBSITES_CONTAINER_START_TIME_LIMIT time to wait before evaluating the health and then restarting the container

WEBSITES_ENABLE_APP_SERVICE_STORAGE if true, the /home dir will be shared across container instances and files will persist

WEBSITE_WEBDEPLOY_USE_SCM set to false to deploy a container-based web app using WebDeploy/MSDeploy

The App Service plan has one or more VM’s behind the scenes. Microsoft manages the compute layer, making sure the

machines are patched, that they’re highly available, and that they’re functional. We can deploy multiple web apps onto

an app service plan, and that app service plan is scalable. There are two types of app service plans: non-isolated and

isolated. Non-isolated app service plans are not inside a virtual network – no isolation at the network layer. Isolated app

service plans are fully isolated and dedicated environments for running highly scalable, high performance web apps. You

can put isolated apps into virtual networks for enhanced security. The app service plan is where you choose the OS and

the pricing tier.

Web Jobs is another feature of Azure App Service that enables you to run a program or script in the same instance as a web app, API app, or mobile app.

Azure Functions provides another way to run programs and scripts. – OUT OF SCOPE

App Service Environment (ASE) is an Azure App Service feature that provides a fully isolated and dedicated environment for securely running App Service

apps at high scale. Helps – OUT OF SCOPE

Create an Azure App Service Web App

Skill: create an Azure App Service Web App

https://docs.microsoft.com/en-us/learn/paths/create-azure-app-service-web-apps/

https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-app-service/

https://docs.microsoft.com/en-us/learn/modules/host-a-web-app-with-azure-app-service/

You need to create a resource group, app service plan, and then a web app.

From Azure Portal

You can create a Web App from the Azure portal > Create Resource > Web App > follow the wizard. Creating a web app

allocates resources in App Service Plan, which you can use to host any web-based application that is supported by Azure.

To publish, you can either push code selecting your runtime stack (.NET Core, Java, Node, …), or you can use a container

image as your application.

From Azure CLI

You can create a web app using Azure CLI.
as group create --name my-resource-group --location westus2

az appservice plan create --name my-app-service-plan --resource-group my-resource-group \

 --sku s1 --is-linux

az webapp create --group my-resource-group --plan my-app-service-plan \

 --name my-web-app --runtime “node”

From PowerShell

You can create a web app using PowerShell.
New-AzResourceGroup -Name ‘my-rg’ -Location ‘westus’

New-AzAppServicePlan -Name ‘my-plan’ -Location ‘westus’`

 -ResourceGroupName ‘my-rg’ -Tier S1

New-AzWebApp -Name ‘my-web-app’ -Location ‘westus’ `

 -AppServicePlan ‘my-plan’ -ResourceGroupName ‘my-rg’

From ARM Template

When it comes to building web apps with infrastructure as code, the native solution on Azure is using ARM templates.

From Azure Portal > Create Resource > Template > Web App. Follow the wizard to select a resource group and provide

the inputs needed to create the ARM template. Once we have an ARM template, we can then deploy it from the Portal,

from CLI, or from PowerShell.

https://docs.microsoft.com/en-us/learn/paths/create-azure-app-service-web-apps/
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-app-service/
https://docs.microsoft.com/en-us/learn/modules/host-a-web-app-with-azure-app-service/

Enable Diagnostic Logging

Skill: enable diagnostics logging

https://docs.microsoft.com/en-us/learn/modules/capture-application-logs-app-service/

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-5.0

https://docs.microsoft.com/en-us/azure/app-service/troubleshoot-dotnet-visual-studio

https://docs.microsoft.com/en-us/azure/app-service/troubleshoot-diagnostic-logs

https://mderriey.com/2020/08/08/a-look-at-the-aspnet-core-logging-provider-for-app-service/

From Azure Portal

To enable app service diagnostic logging in the portal, go to App Service > monitoring > App Service logs.

You can enable diagnostics logs using the Azure portal and you can select the level of error log (Disabled, Error, Warning,

Information, Verbose).

Options for diagnostic logging:

• Application Logging Send a log message directly from your code.

• Web Server Logging 3 types of web server diagnostic logs can be enabled: Off, Storage, Filesystem.

• Detailed error messages for an HTTP status code of 400 or more, a detailed log is created.

• Failed request tracing Failed requests to the server can be enabled.

• Deployment logging This log is automatically enabled and gathers all information related to the deployment of

your application.

From CLI

az webapp log config `

--web-server-logging filesystem `

–-name my-app `

--resource-group my-rg

https://docs.microsoft.com/en-us/learn/modules/capture-application-logs-app-service/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/azure/app-service/troubleshoot-dotnet-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/troubleshoot-diagnostic-logs
https://mderriey.com/2020/08/08/a-look-at-the-aspnet-core-logging-provider-for-app-service/

Retrieving Diagnostic Logs

Use Windows File Explorer as an FTP client and create a connection to the App Service root folder in Azure. FTP

connection credentials are available in the publish profile, which can be downloaded from Portal > App Service >

Overview, and clicking on “Get publish profile”.

Or from the CLI:

az webapp log download --log-file \<_filename_\>.zip --resource-group \<_resource group name_\> --name \<_app

name_\>

Writing to Diagnostic Logs with C#

Install the NuGet package Microsoft.Extensions.Logging.AzureAppServices. Add the appropriate provider to the logging

system:

// Program.cs

using Microsoft.Extensions.Logging;

public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureLogging(builder => builder.AddAzureWebAppDiagnostics())

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

In code, reference the ILogger as usual, with dependency injection.

 public class HomeController : Controller

 {

 private readonly ILogger<HomeController> _logger;

 public HomeController(ILogger<HomeController> logger)

 {

 _logger = logger;

 _logger.LogError("TESTING LOGGING");

 }

 // your code here…

 }

install asp net core logging integration site extension

https://www.visualstudiogeeks.com/devops/installing-aspnet-core-site-extensions-for-azure-app-service-using-arm

https://nugetmusthaves.com/Package/Microsoft.AspNetCore.AzureAppServices.SiteExtension

Deploy Code to a Web App

Skill: deploy code to a web app

https://docs.microsoft.com/en-us/learn/modules/publish-azure-web-app-with-visual-studio/

https://docs.microsoft.com/en-us/learn/modules/stage-deploy-app-service-deployment-slots/

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots#Auto-Swap

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots#specify-custom-warm-up

https://docs.microsoft.com/en-us/learn/modules/stage-deploy-app-service-deployment-slots/

For Azure App Services, Azure supports publishing your web app through deployment-as-code to the underlying services

either directly to a runtime stack, or as a Docker container. Before configuring automated deployment, you first need to

create an Azure app service plan in a resource group, and a web app in the app service. This can be done through the

Azure Portal using the usual +Create a resource wizard approach.

Azure supports automated-deployment directly from several sources:

• Azure Repos (part of Azure DevOps)

• GitHub

• Bitbucket

• OneDrive

• Dropbox

https://www.visualstudiogeeks.com/devops/installing-aspnet-core-site-extensions-for-azure-app-service-using-arm
https://nugetmusthaves.com/Package/Microsoft.AspNetCore.AzureAppServices.SiteExtension
https://docs.microsoft.com/en-us/learn/modules/publish-azure-web-app-with-visual-studio/
https://docs.microsoft.com/en-us/learn/modules/stage-deploy-app-service-deployment-slots/
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots#Auto-Swap
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots#specify-custom-warm-up
https://docs.microsoft.com/en-us/learn/modules/stage-deploy-app-service-deployment-slots/

You authorize Azure App Service to retrieve code from the source repository and then you enable continuous

deployment in Azure. You associate your web app to point to a branch of one of these repositories, and anytime the

branch is updated, the update automatically deploys to your App Service web application.

Go to Azure Portal > App Services > your App Service > Deployment > Deployment Center.

Follow the wizard:

1. Define the source control where we are storing our code. Scroll down under Continuous Deployment (CI / CD)

and choose one of the sources listed, and then click the Authorize button.

2. Who’s going to build the code? For example, what service will do a compile on our .NET application? Click one of

the build service choices, and click Continue.

3. Click Finish. That will kick off the first deployment.

Azure also supports manual deployment:

• Git

• CLI (az webapp up)

• zip deploy

• WAR deploy (Java)

• Visual Studio

• FTP

Deployment Slots

https://docs.microsoft.com/en-gb/learn/modules/understand-app-service-deployment-slots/

Within a single Azure App Service web app, you can create multiple deployment slots. Each slot is a separate instance of

that web app, and it has a separate hostname. However, each slot shares the resources of the App Service plan. You can

deploy a different version of your web app into each slot. One slot is the production slot. This slot is the web app that

users see when they connect. When ready to put a new app version into production, deploy it by swapping its slot with

the production slot. Unlike a code deployment, a slot swap is instantaneous. If necessary, you can roll back the version

by swapping the slots back.

The initial delay for compilation and other server actions before the first page is delivered is called a cold start. You can

avoid a cold start by using slot swaps to deploy to production. When you swap a slot into production, you "warm-up"

the app because your action sends a request to the root of the site to ensure that all compilation and caching tasks

finish, and the site responds as fast as if it had been deployed for days. When you swap two slots, the app's

configuration settings travels to the new slot. You can override this by configuring them as slot settings.

You can create a new slot or you can clone another slot. After you clone the settings, the configuration of the two slots

can be changed independently. Although you can clone settings to a new slot, you can't clone content. The new slot is

effectively a separate web app with a different hostname. You can control access to a slot by using IP address

restrictions.

The swap-with-preview feature helps you discover problems before your app goes live into production. The swap

proceeds in two phases so you can test the app in the source slot to make sure it works with the target slot

configuration. If you find no problems, the hostnames for the two sites are swapped.

Auto swap brings swap-based deployment to automated deployment pipelines. When you configure a non-production

slot for auto swap, Azure automatically swaps it whenever you push code into that slot. When you use auto swap, you

can't test the new app version in the staging slot before the swap. To address this, you can deploy to a separate slot

that's dedicated for testing.

Some apps might require custom warm-up actions before the swap. The applicationInitialization configuration element

in web.config lets you specify custom initialization actions. The swap operation waits for this custom warm-up to finish

before swapping with the target slot.

<system.webServer>

https://docs.microsoft.com/en-gb/learn/modules/understand-app-service-deployment-slots/

 <applicationInitialization>

 <add initializationPage="/" hostName="[app hostname]" />

 <add initializationPage="/Home/About" hostName="[app hostname]" />

 </applicationInitialization>

</system.webServer>

Web App Settings including SSL, API, and Connection Strings

Skill: configure web app settings including SSL, API, and connection strings

https://docs.microsoft.com/en-gb/learn/modules/configure-web-app-settings/

https://docs.microsoft.com/en-gb/learn/modules/configure-web-app-settings/2-configure-application-settings

https://docs.microsoft.com/en-gb/learn/modules/configure-web-app-settings/6-configure-security-certificates

Configuration of app services, including app settings and connection strings, can be done through the Azure Portal, or

scripted using JSON. In the Portal, click on the desired app service, and select Settings > Configuration.

Configure web app security with SSL

To use HTTPS to secure your connection, you need to upload an SSL certificate to the web application in Azure. To use

SSL, you need to be using at least the Basic tier service plan type. Public vs. private certificates (managed vs.

unmanaged) – we can purchase from a certificate authority such as VeriSign, or we can generate private certificates

using our own certificate authority. It’s a matter of trust – will the client devices trust a private certificate? In the

properties of your app service plan, you can enforce HTTPS and TLS (transport layer security).

To add an SSL certificate to your App Service, in the portal go to TLS/SSL settings for you App Service. You can access

these settings in the Configuration menu on the Settings section in the App Service blade.

https://docs.microsoft.com/en-gb/learn/modules/configure-web-app-settings/
https://docs.microsoft.com/en-gb/learn/modules/configure-web-app-settings/2-configure-application-settings
https://docs.microsoft.com/en-gb/learn/modules/configure-web-app-settings/6-configure-security-certificates

If you set a variable in this section that matches a variable in Web.config or appsettings.json files, the value of the

variables in the configuration files will be replaced with the value in your Azure Web App settings.1

Configure Database Connection String

To get a connection string for an Azure SQL database, click on “show database connection strings”.

Then go to “Connection strings” under Settings/Configuration for your App Service.

Then give the connection string a name, paste in your connection string and put in your password, and then select a

database type.

Autoscaling

Skill: implement autoscaling rules, including scheduled autoscaling, and autoscaling by operational or system metrics

https://docs.microsoft.com/en-us/learn/modules/app-service-autoscale-rules/

https://docs.microsoft.com/en-us/learn/modules/app-service-scale-up-scale-out/

https://docs.microsoft.com/en-us/learn/modules/scale-apps-app-service/

Autoscaling is a feature of the App Service Plan used by the web app.

Autoscaling requires you to configure autoscale rules. Autoscaling performs scaling in and out, as opposed to scaling up

and down. Autoscaling doesn't have any effect on the CPU power, memory, or storage capacity, it only changes the

number of web servers. Autoscaling makes its decisions based on rules that specify the threshold for a metric, and

triggers an autoscale event (change number of web servers).

Autoscaling is integrated with Azure Monitor. This means we can configure Azure Monitor to send out notifications

when scaling events are triggered.

https://docs.microsoft.com/en-us/learn/modules/app-service-autoscale-rules/
https://docs.microsoft.com/en-us/learn/modules/app-service-scale-up-scale-out/
https://docs.microsoft.com/en-us/learn/modules/scale-apps-app-service/

Important: when adding a rule to scale out based on a condition, remember to add a corresponding rule to scale back in

when the condition is over.

Scheduled Autoscaling

Scale to a specific instance count according to a schedule.

Go to App Service > Scale out (App Service plan) > Custom autoscale > +Add a scale condition

Scaling by Operational Metrics or System Metrics

As before with scheduled autoscaling, but this time when you “+Add a scale condition”, choose the “Scale based on a

metric” radio button.

For example, the metric could be CPU percentage

Setting the duration to 10 minutes is done so that it doesn’t scale immediate for an anomaly such as a momentary spike

in usage. We don’t want it to scale unnecessarily.

We need to make sure we have both a scale out rule and a scale in rule to return things back to normal.

A custom implementation would collect operational and system metrics, analyze the metrics, and then scale resources

accordingly.

Scale based on a metric, such as the length of the disk queue, or the number of HTTP requests awaiting processing

System metrics are measurement types found in the system.

1.3 Implement Azure functions

• create and deploy Azure Function apps

• implement input and output bindings for a function

• implement function triggers by using data operations, timers, and webhooks

• implement Azure Durable Functions

• implement custom handlers

https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json

https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp

 (link to Azure Functions error handling and retries)

Azure Functions allow you to host business logic that can be executed without managing or provisioning infrastructure.

With traditional enterprise architecture, you need to consider server hardware infrastructure provisioning and

maintenance up front. With serverless computing, this is delegated to the cloud provider letting you focus completely on

building the app logic.

Every Azure function has its own function.json file, which defines the trigger and provides configuration information

such as bindings. Functions have one trigger, and any number of bindings.

The host.json metadata file contains global configuration options that affect all functions for a function app.

Create and deploy Azure Function apps

Skill: create and deploy Azure Function apps

https://docs.microsoft.com/en-us/azure/azure-functions/functions-core-tools-reference

https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference

https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/

https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/

https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/3-create-an-azure-

functions-app-in-the-azure-portal

https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json
https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-core-tools-reference
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference
https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/
https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/
https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/3-create-an-azure-functions-app-in-the-azure-portal?pivots=javascript
https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/3-create-an-azure-functions-app-in-the-azure-portal?pivots=javascript
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

Functions are hosted in an execution context called a function app. Function apps are used to logically group Azure

Functions and link them to a hosting plan and a storage account.

Hosting plan options: app service plan, consumption plan, premium plan, dedicated plan, ASE, Kubernetes.

To create a Function App from the Azure Portal:

Create a resource > Compute > Function App

Create Function App page > Enter basic settings > Review + create > Create

From Azure CLI:

az functionapp create -g MyResourceGrp -p MyAppServicePlan -n MyFuncAppName -s MyStorageAcct

After the Function App has been created, you can publish Azure Functions to it.

From VSCode and command line, there is now a Func command. First install Azure func core tools:

npm i azure-functions-core-tools

Initialize the function app:

func init MyFunctionProject

This will create a folder named MyFunctionProject and will initialize the project MyFunctionApp.csproj. You will be

prompted for initialization parameters such as runtime (dotnet, node, python, …)

Then change directory and create the function:

cd MyFunctionProject

func new

You will be prompted for the function creation parameters such as template (http trigger, timer, …), function name.

Input/Output Bindings

Skill: implement input and output bindings for a function

https://docs.microsoft.com/en-us/learn/modules/chain-azure-functions-data-using-bindings/

Bindings provide a declarative way to connect to data from within your code. The type of binding defines where we are

reading or sending data. A binding type can be used as an input, an output or both. However not all types support both

input and output. An Azure Function can have multiple input and output binding.

Common binding properties: Name, Type, Direction.

Bindings are defined in JSON. A binding is configured in your function's configuration file, which is named function.json

and lives in the same folder as your function code. The Name property is how your code accesses the binding’s value.

For example:

{

 "bindings": [

 {

 "type": "httpTrigger",

 "direction": "in",

 "name": "Request",

 },

 {

 "type": "http",

 "direction": "out",

 "name": "Response"

 }

]

}

Triggers

Skill: implement function triggers by using data operations, timers, and webhooks

https://docs.microsoft.com/en-us/learn/modules/chain-azure-functions-data-using-bindings/

https://docs.microsoft.com/en-us/learn/modules/execute-azure-function-with-triggers/

A trigger is an object that defines how an Azure Function is invoked. Every function must have exactly one trigger

associated with it.

Data Operations

Blob, Queue, Cosmos DB and Event Hub trigger types are examples of data operation triggers. For example, a blob

trigger is a trigger that executes a function when a file is uploaded or updated in Azure Blob storage. Blob triggers have a

Path setting. For example

samples-workitems/{name}

The first part, samples-workitems, represents the blob container that the trigger monitors. The second part, {name}

means that every type of file will cause the trigger to invoke the function. The name represents a parameter in your

Azure function that receives the name of the added file.

Timers

 A timer trigger is a trigger that executes a function at a consistent interval. Timer triggers can be used to implement

scheduled tasks. You supply two pieces of information: timestamp parameter name, a schedule (CRON expression). A

CRON expression consists of:

{second} {minute} {hour} {day} {month} {day of the week}

For example, a CRON expression to create a trigger that executes every five minutes looks like:

0 */5 * * * *

CRON expression special characters:

• Asterisk * means select every value in a field

• Comma , separates items in a list

• Hyphen – specifies a range

• Slash / specifies an increment

Webhooks – HTTP Request Triggers

https://docs.microsoft.com/en-us/learn/modules/monitor-github-events-with-a-function-triggered-by-a-webhook/

https://docs.microsoft.com/en-us/learn/modules/execute-azure-function-with-triggers/
https://docs.microsoft.com/en-us/learn/modules/monitor-github-events-with-a-function-triggered-by-a-webhook/

HTTP triggers can be used to respond to webhooks. You supply a webhook callback to a third-party app. The callback will

be used to call your HTTP trigger Azure Function.

Note: In addition to responding to webhooks, HTTP triggers can also be used to implement APIs (out of scope).

HTTP triggers let you customize the HTTP method (GET, POST), and the Route to control the URL of your Function. For

example:

{

 "bindings": [

 {

 "type": "httpTrigger",

 "name": "req",

 "direction": "in",

 "methods": ["get"],

 "route": "products/{category:alpha}/{id:int?}"

 },

 {

 "type": "http",

 "name": "res",

 "direction": "out"

 }

]

}

HTTP triggers can be secured by requiring an authorization key with one of three authorization levels:

• Anonymous: no key required

• Function: key per function

• Admin: key per function app

Example:

[FunctionName("HttpTriggerCSharp")]

public static async Task<IActionResult> Run(

 [HttpTrigger(AuthorizationLevel.Function, "get", "post", Route = null)] HttpRequest req, ILogger log)

{

 string name = req.Query["name"];

 string requestBody = String.Empty;

 using (StreamReader streamReader = new StreamReader(req.Body))

 {

 requestBody = await streamReader.ReadToEndAsync();

 }

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 name = name ?? data?.name;

 return name;

}

 Durable Functions

Skill: implement Azure Durable Functions

https://docs.microsoft.com/en-us/learn/modules/create-long-running-serverless-workflow-with-durable-functions/

Durable Functions enables you to implement stateful function workflows in a serverless-environment. These stateful

workflows are called orchestrations, and are defined using an orchestration function.

https://docs.microsoft.com/en-us/learn/modules/create-long-running-serverless-workflow-with-durable-functions/

The programming model for durable functions consists of three function types: Client, Orchestrator, and Activity.

• Client functions are the entry point. When triggered, they initiate a new orchestration.

• Orchestrator functions describe how actions are executed, and the order in which they are run.

• Activity functions are the basic units of work in a durable function orchestration.

Durable functions implement many common workflow patterns including function chaining, fan out/fan in, async HTTP

API, Monitor, Human Interaction.

Chaining

Chaining orchestrates each of the desired functions in order to have the output of one function act as the input of the

next.

Fan out/fan in

Fan out/in has a single orchestrator function execute multiple functions to execute in parallel (fan out), and then wait

until they are all complete, and aggregate the results together (fan in).

Async HTTP APIs

Async HTTP is when the API addresses the problem of coordinating the state of long-running operations with external

clients, by redirecting the external clients to an endpoint where they can use polling to learn when the operation is

finished.

Monitor

Monitor refers to a flexible, recurring process in a workflow that checks to see when something is completed. An

example is polling until specific conditions are met.

Human interaction (requiring manual intervention)

Human interaction is when durable functions are used to trigger a process to notify a party and require their

intervention for the process to proceed. If no response is received within a timeframe, then other rules can be applied.

Aggregator (Stateful Entities)

Aggregator is when the API aggregates event data over a period of time into a single, addressable entity.

Implement custom handlers

Skill: implement custom handlers

https://docs.microsoft.com/en-us/azure/azure-functions/functions-custom-handlers

https://azure.microsoft.com/en-ca/updates/azure-functions-custom-handlers-are-now-generally-available/

https://www.youtube.com/watch?v=-2mAFSNCP-I

https://www.youtube.com/watch?v=RPCEH247twU

Every Functions app is executed by a language-specific handler. While Azure Functions supports many language handlers

by default, there are cases where you may want to use other languages or runtimes. Custom handlers are lightweight

web servers that receive events from the Functions host. Any language that supports HTTP primitives can implement a

custom handler.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-custom-handlers
https://azure.microsoft.com/en-ca/updates/azure-functions-custom-handlers-are-now-generally-available/
https://www.youtube.com/watch?v=-2mAFSNCP-I
https://www.youtube.com/watch?v=RPCEH247twU

An Azure Function implemented as a custom handler must configure the host.json, local.settings.json, and function.json

files. There is also a proxies.json file.

A custom handler is defined by configuring the host.json file with details on how to run the web server via the

customHandler section. Use the arguments array to pass any arguments to the executable. Arguments support

expansion of environment variables (application settings) using %% notation.

Sample host.json custom handler section:

{

 "version": "2.0",

 "customHandler": {

 "description": {

 "defaultExecutablePath": "app/handler.exe",

 "arguments": [

 "--database-connection-string",

 "%DATABASE_CONNECTION_STRING%"

],

 "workingDirectory": "app"

 }

 }

}

defaultExecutablePath The executable to start as the custom handler process.

workingDirectory The working directory in which to start the custom handler process.

arguments An array of command line arguments to pass to the custom handler process.

local.settings.json defines application settings used when running the function locally. As it may contain secrets,

local.settings.json should be excluded from source control. In Azure, use application settings instead. For custom

handlers, set FUNCTIONS_WORKER_RUNTIME to Custom in local.settings.json.

Sample local.settings.json:

{

 "IsEncrypted": false,

 "Values": {

 "FUNCTIONS_WORKER_RUNTIME": "Custom"

 }

}

When used with a custom handler, the function.json contents are no different from how you would define a function

under any other context. The only requirement is that function.json files must be in a folder named to match the

function name.

Request Payload the Functions host sends an HTTP post request to the custom handler with a payload in the body. The

payload includes a JSON structure with two members: Data and Metadata. The Data member includes keys that match

input and trigger names as defined in the bindings array in the function.json file. The Metadata is generated from the

event source.

Example:

{

 "Data": {

 "myQueueItem": "{ message: \"Message sent\" }"

 },

 "Metadata": {

 "DequeueCount": 1,

 "ExpirationTime": "2019-10-16T17:58:31+00:00"

 }

}

Response Payload The function responses are formatted as key/value pairs. Supported keys include:

Outputs response values as defined by the bindings array in function.json

Logs the Function’s invocation log

ReturnValues configured as $return in the function.json file

Example:

{

 "Outputs": {"res": "Message enqueued"},

 "Logs": ["Log message 1", "Log message 2"],

 "ReturnValue": "{\"hello\":\"world\"}"

}

2. Develop for Azure storage (15-20%)

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy

https://docs.microsoft.com/en-gb/learn/modules/explore-azure-blob-storage/5-azure-storage-redundancy

A storage account is a cloud repository for blobs, files, queues, tables.

FYI: Storage accounts can also be used to contain unmanaged disks. Unmanaged disks are created and managed by you. Azure Managed Disks are

managed by Microsoft Azure. Compared to unmanaged disks, Azure-managed disks provide better scalability for VMs with VM scale sets, and breaks the

limit of 20,000 IOPS per storage account, which will impact the number of VMs that can be created per storage account. Azure Managed Disks are

recommended by Microsoft. OUT OF SCOPE

Storage accounts have 4+2 storage redundancy options:

• Local (LRS) – multiple copies of data in one data center made synchronously

• Zone (ZRS) – multiple copies in multiple data centers within a region

• Geo (GRS) – multiple copies in multiple regions

o 3 copies in one data center within the primary region using LRS

o 3 async copies in secondary region using LRS

• Geo-zone (GZRS) – multiple copies in multiple regions

o 3 copies in separate data centers within the primary region using ZRS

o 3 async copies in secondary region using LRS

• Read-Access Geo (RA-GRS) – same as GRS but with ability to read from replicas

• Read-Access Geo-zone (RA-GZRS) – same as GZRS but with ability to read from replicas

note: zone = data center = availability zone

LRS: ZRS:

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-gb/learn/modules/explore-azure-blob-storage/5-azure-storage-redundancy

GRS: GZRS:

The hot and cool tiers support all redundancy options. The archive tier supports only LRS, GRS, and RA-GRS.

2.1 Develop solutions that use Cosmos DB storage

• select the appropriate API and SDK for your solution

• implement partitioning schemes and partition keys

• set the appropriate consistency level for operations

• perform operations on data and Cosmos DB containers

• manage change feed notification

https://docs.microsoft.com/en-us/learn/paths/az-204-develop-solutions-that-use-azure-cosmos-db/

Azure Cosmos DB is an enterprise grade non-relational database. At the lowest level, all data in any Azure Cosmos DB is

stored in an ARS (atom-record-sequence) format, allowing Cosmos DB to achieve multi-modal database functionality.

An Azure Cosmos DB account contains a unique DNS name. It is the fundamental unit of global distribution and high

availability. It connects your usage to your Azure subscription for billing purposes. An Azure Cosmos DB account is a

container for one or more databases which are in turn containers for one or more collections. A collection contains

documents. A document is an unstructured set of key/value pairs, read and written in JSON format.

The hierarchy of different entities:

https://docs.microsoft.com/en-us/learn/paths/az-204-develop-solutions-that-use-azure-cosmos-db/

Comparing Azure Cosmos DB to SQL server:

Azure Cosmos DB

 SQL Server analogy

cosmos db account is like sql server host server

database is like database

collection (aka container) is like table

document is like record

unstructured key/value pair is like column value (attribute) of a record

Example: create a Cosmos DB account using Azure CLI.

create a cosmos db account (defaults to sql api)

az cosmosdb create --name pluralsight --resource-group pluralsight

create a sql database

az cosmosdb sql database create --account-name pluralsight

 --name sampledb

create a sql database container

az cosmosdb sql container create --resource-group pluralsight

 --account-name pluralsight --database-name sampledb

 --name samplecontainer --partition-key-path “/employeeid”

Select Appropriate API and SDK

Skill: select the appropriate API and SDK for your solution

https://docs.microsoft.com/en-us/learn/modules/choose-api-for-cosmos-db/

API

The API is chosen when creating the Cosmos DB account and determines the type of account to create. Azure Cosmos

DB provides five main APIs (plus etcd) to suit the needs of your application, each of which currently requires a separate

account:

SQL (Core) relational the default API. You can query the hierarchical JSON documents with a SQL-like language. The
SQL API is the preferred choice for JSON documents.

MongoDB

document allows existing MongoDB SDK clients to interact with the data as if it was an actual MongoDB
database. MongoDB supports JSON documents.

Cassandra

SQL-like Allows you to query using the Cassandra Query Language (CQL). Not relational (no joins).

Azure Table NoSQL provides support for applications that are written for Azure Table Storage. Querying is by
OData and LINQ queries in code, and the original REST API for GET operations.

Gremlin

graph provides a graph-based view over the data. You typically use a traversal language to query a
graph database, and Azure Cosmos DB supports the Gremlin language (Apache Tinker pop).

Etcd Kubernetes Etcd API allows you to access the key-value items in the Kubernetes Etcd configuration folder

SQL API is the preferred data model if you are creating a new application. If you're working with graphs or tables, or

migrating your MongoDB or Cassandra data to Azure, select relevant data models:

Scenario SQL (Core) MongoDB Cassandra Azure Table Gremlin

New projects being created from scratch ✔

Existing MongoDB, Cassandra, Azure
Table, or Gremlin data

 ✔ ✔ ✔ ✔

Analysis of the relationships between
data

 ✔

All other scenarios

✔

SDK

Data is stored in JSON documents in Azure Cosmos DB. Documents can be created, retrieved, replaced, or deleted in the

portal, or programmatically. Azure Cosmos DB provides client-side SDKs for .NET, .NET Core, Java, Node.js, and Python,

each of which supports these operations.

Selecting an SDK:

• SQL API utilize the latest Cosmos DB SDK for your platform

• MongoDB, Cassandra, and Gremlin use current SDK’s for those API’s

• Azure Table API leverage the current Table Storage SDK

.NET starts with the Microsoft.Azure.DocumentDB NuGet package. This is the client library (SDK) for Azure Cosmos DB

DocumentDB (SQL) API. In code:

https://docs.microsoft.com/en-us/learn/modules/choose-api-for-cosmos-db/

using Microsoft.Azure.Documents.Client;

string endpoint = “https://whatever”; // from portal – put in appsettings.json

string key = “qwertyuiop1234567890”; // from portal – put in appsettings.json

DocumentClient dc = new DocumentClient(new Uri(endpoint), key);

var uri = UriFactory(“my-database-name”, “my-collection-name”);

var result = dc.CreateDocumentCollectionUri(uri, partitionkeyValue)

.GetAwaiter()

.GetResult();

var query = dc.CreateDocumentQuery<EmployeeModel>(uri, myOptions)

 .Where(e => e.LastName == “Jack”);

foreach (var employee in query)

{

 Console.WriteLine(employee);

}

Partitioning Keys and Schemes

Skill: implement partitioning schemes and partition keys

https://docs.microsoft.com/en-us/learn/modules/monitor-and-scale-cosmos-db/

https://docs.microsoft.com/en-us/learn/modules/create-cosmos-db-for-scale/4-how-to-choose-a-partition-key

A partition key is a document property that defines the partition strategy. It's set when you create a container and can't

be changed.

Understand the following key metrics:

• Total requests made per second

• Total throughput, the rate at which data is processed measured in Request Units per second (RU/s)

• Total storage, measured in kilobytes (KB)

An RU is the amount of CPU, disk I/O, and memory required to read 1 KB of data in 1 second. The cost to do a point

read, which is fetching a single item by its ID and partition key value, for a 1 KB item is 1 RU. When you create an Azure

Cosmos DB collection, you configure a fixed maximum number of RUs. The sum of RUs that all of the operations

consume in the collection must be less than this value. If you exceed this value, requests to the database are throttled.

The partition key is used to automatically partition data among multiple servers for scalability. Choose a JSON property

name that has a wide range of values and is likely to have evenly distributed access patterns. Partitioning is the

distribution and grouping of your data across the underlying resources. Documents are grouped in a partition based on

the value of the partition key. You specify the partition key when you create the collection. An effective partitioning

strategy distributes data and access evenly across partitions. Querying documents from within the same partition is less

expensive than querying across partitions.

A partitioning strategy enables you to add more partitions to your database when you need them. This scaling strategy is

called scale out or horizontal scaling, and is defined by a partition key. A partition key is the value by which Azure

organizes your data into logical divisions and serves as the means of routing your request to the correct partition. It

should be a value that does not change for the item, and it should have many different values represented (high

cardinality) in the container.

Partition key best choice:

https://docs.microsoft.com/en-us/learn/modules/monitor-and-scale-cosmos-db/
https://docs.microsoft.com/en-us/learn/modules/create-cosmos-db-for-scale/4-how-to-choose-a-partition-key

• Have a high cardinality. This allows data to distribute evenly across all physical partitions.

• Evenly distribute requests. Keeps the RU/s is evenly divided across all physical partitions.

• Evenly distribute storage. Each partition can grow up to 20 GB in size.

Logical partitions: A logical partition is a set of items within a container that share the same partition key. You can divide

a container into pieces based on this partition key criteria. Each of these pieces is a logical partition. All items stored in a

logical partition share the same partition key. A container can have as many logical partitions as it needs, but each

partition is limited to 20GB of storage. Logical partitions are managed by Cosmos DB, but their use is governed by your

partition key strategy.

Physical partitions: a group of replicas of your data that is physically stored on the servers. A physical partition can

contain one or more logical partitions. Physical partitions are managed entirely by Azure Cosmos DB.

Replica Set: A physical partition contains multiple replicas of the data, known as a replica set. By having this data

replicated, you enable your storage to be durable and fault tolerant. Replica sets are managed entirely by Azure Cosmos

DB.

Avoid hot partitions. A hot partition is accessed more than the other partitions. A partition key design that doesn't

evenly distribute throughput requests can create hot partitions, which results in inefficient use of the total configured

throughput. A good partition design avoids hot partitions.

Other strategy considerations:

• Throughput is distributed evenly across all of your physical partitions

• Multi-item transactions require triggers or stored procedures

• You will want to minimize cross-partition queries for heavier workloads

• Decide upon a partition key strategy before creating your container

The three indexing modes you can use with Azure Cosmos DB are:

• Consistent: The index is updated synchronously every time a new document is written to the collection. New

queries on the collection use the updated index immediately. Query results are consistent with the updated

documents in the collection.

• Lazy: The index is updated at a lower priority. The reads and writes from the collection take a higher priority. In

lazy mode, writes are cheaper because the index isn't updated immediately. When the index is fully updated

depends on the demands on the collection. Query results don't include the updated documents until the index is

consistent with the collection.

• None: No index is created. Queries are expensive on collections that aren't indexed. If you're using your Azure

Cosmos DB collection to read records directly rather than querying the collection, it's possible to avoid the

overhead of indexing.

 Set Consistency Level

Skill: set the appropriate consistency level for operations

“Distributed databases that rely on replication for high availability, low latency, or both, must make a fundamental

tradeoff between the read consistency, availability, latency, and throughput.”

 – Microsoft Cosmos DB Documentation

Azure Cosmos DB has five different consistency levels: strong, bounded staleness, session, consistent prefix, and

eventual.

Consistency Level Guarantees

Strong Guarantees that reads get the most recent version of an item. Linearizability.

Bounded Staleness Guarantees that a read has a max lag (either versions or time). Reads lag behind

writes by at most k prefixes or t interval.

Session Guarantees that a client session will read its own writes. Session consistency is

scoped to a client session, and provides predictable consistency for that session.

Consistent Prefix Guarantees that updates are returned in order. This level guarantees that you

always read data in the same order that you wrote the data, but there’s no

guarantee that you can read all the data. If writes were performed in the order A,

B, C, then a client sees either A, A,B, or A,B,C, but never out of order like A,C or

B,A,C.

Eventual Provides no guarantee for order. Out of order reads. Use this consistency level if

the order of the data is not essential for your application.

Cosmos DB containers

An Azure Cosmos container is the fundamental unit of scalability. A container is specialized into API-specific entities. An

item can represent either a document in a collection, a row in a table, or a node or edge in a graph.

SQL API Cassandra API MongoDB API Gremlin API Table API

container Container Table Collection Graph Table

item Item Row Document Node or edge Item

A container is a schema-agnostic container of items. Items in a container can have arbitrary schemas. By default, all

items that you add to a container are automatically indexed without requiring explicit index or schema management.

Perform operations on data and Cosmos DB containers

Skill: perform operations on data and Cosmos DB containers

https://docs.microsoft.com/en-us/learn/modules/access-data-with-cosmos-db-and-sql-api/

Azure Cosmos DB uses SQL queries, just like SQL Server, to perform query operations. The returned results would be a

JSON document. The source can also be reduced to a smaller subset. For instance, to enumerate only a subtree in each

document, the subroot could then become the source, as shown in the following example:

SELECT *

 FROM Products.shipping

Any defined valid JSON value that can be found in the source is considered for inclusion in the result of the query. For

example:

SELECT *

 FROM Products.shipping.weight

The JOIN clause lets you perform inner joins with the document and the document subroots.

SELECT p.productId

 FROM Products p

 JOIN p.shipping

the product IDs are returned for each product that has a shipping method. If you added a third product that didn't have

a shipping property, the result would be the same because the third item would be excluded for not having a shipping

property.

Geospatial queries enable you to perform spatial queries using GeoJSON Points, allowing you to work with a Point,

Polygon, or LineString.

Stored procedures are written in JavaScript and are stored in a container on Azure Cosmos DB. Stored procedures are

the only way to achieve atomic transactions within Azure Cosmos DB; the client-side SDKs do not support transactions.

UDFs can be called only from inside queries.

Manage change feed notification

Skill: manage change feed notification

https://docs.microsoft.com/en-us/learn/modules/access-data-with-cosmos-db-and-sql-api/

https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed

https://www.youtube.com/watch?v=sYkKXSTws4E

Change feed in Azure Cosmos DB is a persistent record of changes to a container in the order they occur. While all other

server-side programming approaches enable execution on the Cosmos DB engine, change feed processing enables you

to react to data changes using server-side code outside of the Cosmos DB engine.

Change feed enables you to be notified for any insert and update on your data. Deletes are not directly supported, but

you can leverage a soft-delete flag. A change will appear exactly once in the change feed. Reading data from the

database will consume throughput. Partition updates will be in order, but between partitions there is no guarantee.

Change feed is not supported for the Azure Table API.

You can trigger an Azure Function with a change feed and start a microservice to process the change.

Another use-case for change feed is for creating a materialized view.

Another use-case for change feed is to replicate data.

https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed
https://www.youtube.com/watch?v=sYkKXSTws4E

The change feed notification is a design pattern that triggers a notification or a call to an API, when an item is inserted or

updated. You can selectively trigger a notification or send a call to an API based on specific criteria. While the Azure

Function code would execute during each write and update, the notification would only be sent if specific criteria had

been met.

Note: change feed support is also available in Azure blob storage. The purpose of blob storage change feed is to provide

transaction logs of all the changes to the blobs and the blob metadata. It provides an ordered, read-only log of these

changes. Client applications can read these logs enabling you to build solutions that process change events occurring in

your Blob Storage account at a low cost.

2.2 Develop solutions that use blob storage

• move items in Blob storage between storage accounts or containers

• set and retrieve properties and metadata

• perform operations on data by using the appropriate SDK

• implement storage policies, data archiving, and retention

Blobs are files for the cloud. Unlike a local file, blobs can be reached from anywhere with an internet connection via

REST API over HTTP/HTTPS. Blobs store unstructured data: text files (text files, logs) and binary files (images, virtual

disks). Blob storage is accessible by http or https protocol, not SMB or NFS like traditional file servers.

There are three kinds of blobs:

• block blobs composed of blocks of different sizes

• append blobs support only appending new data

• page blobs designed for random access reads and writes (512K pages)

Blobs are stored in blob containers, which in turn are stored in storage accounts.

There are three kinds of standard performance storage accounts:

Omitting the legacy storage account kinds, we have the following standard and premium storage account kinds:

Move Blob storage items between storage accounts or containers

Skill: move items in Blob storage between storage accounts or containers

There are several tools that you can use for performing these tasks: Azure Storage Explorer, AzCopy – a command-line

tool for performing bulk copy operations, Python, SSIS – the SQL Server Integration Service Feature Pack for Azure can

transfer data.

However, none of these options provide a move operation. If you need to move blobs or containers between different

locations, you need to perform a copy, and then delete the source.

Azure CLI

To copy blobs with the Azure CLI, use the az storage blob copy command.

#copy a single blob

az storage blob copy start

 --source-account-name acct1

 --source-account-key 00000000

 --source-container images

 --source-blob pic.jpg

 --account-name acct2

 --account-key 00000000

 --destination-container pics

 --destination-blob pic.jpg

#copy container with all its blobs

az storage blob copy start-batch

 --source-account-name acct1

 --source-account-key 00000000

 --source-container images

 --account-name acct2

 --account-key 00000000

 --destination-container pictures

AzCopy Command-line Utility

The AzCopy command line utility has a copy command that allows you to copy between containers, storage accounts,

and local directories. If you copy a directory instead of a single blob, you additionally specify the recursive flag set to true

--recursive=true.

azcopy copy "<source-path>" "<target-path>" [--recursive=true]

To upload a local folder, you specify the local directory as the source, and the URL to a container, including its SAS, as

the target.

azcopy copy "C:\Documents" "https://mystorageurl.com/mycontainer?[SAS]" –recursive=true

When you specify the source directory like this "C:\Documents", azcopy prefixes the blobs with the directory name

“Documents”. If instead you use a star like this "C:\Documents*", azcopy will not prefix the blobs with a directory

name.

Copy a single blob between storage accounts by specifying both source and target urls.

azcopy copy "https://url1.com/mycontainer/myfile.txt?[SAS]" "https://url2.com/mycontainer/myfile.txt?[SAS]"

Copy all blobs from one container to another by using two container URLs.

azcopy copy "https://url1.com/mycontainer1?[SAS]" "https://url2.com/mycontainer2?[SAS]" –recursive=true

Copy all containers from one storage account to another by using two storage account URLs.

azcopy copy "https://url1.com?[SAS]" "https://url2.com?[SAS]" –recursive=true

.NET Client Library

You can also use the .NET client library to copy blobs, but that means you have to write code.

Set and retrieve properties and metadata

Skill: set and retrieve properties and metadata

System properties are information that the storage service adds to storage resources, for example LastModified. Blobs

and containers also support user-defined metadata in the form of key-value string pairs. Your apps can use metadata for

anything you like.

From Azure Portal, under Container/Settings, you can select Properties or Metadata. Under the Overview of a specific

blob, you can access Properties. If you scroll down, you can access Metadata.

If you point your browser at a blob, hit F12 > Network tab > Headers, you will see the properties as headers. These

properties use standard HTTP header names. You can also see metadata as HTTP headers prefixed with x-ms-meta-

Interact with data using the appropriate SDK

Skill: perform operations on data by using the appropriate SDK

https://docs.microsoft.com/en-us/dotnet/api/overview/azure/Storage.Blobs-readme

The Blob storage API is REST-based and supported by client libraries in many popular languages including .NET,

JavaScript, and PHP. Let’s look at .NET

It lets you write apps that create and delete blobs and containers, upload and download blob data, and list the blobs in a

container.

You can set and retrieve properties and metadata in .NET. You need to reference the NuGet package

Azure.Storage.Blobs and then, in code, you add the connection string of your storage account. Then you create a

BlobClient.

 BlobServiceClient blobServiceClient =

 new BlobServiceClient(_connectionString); // note: blob service == storage account

 BlobContainerClient blobContainerClient =

 blobServiceClient.GetBlobContainerClient(_blobContainerName);

 BlobClient blobClient = blobContainerClient.GetBlobClient(_blobName);

Using the blob client, you get properties and metadata

BlobProperties blobProperties = await blobClient.GetPropertiesAsync();

and you set properties and metadata.

 await blobClient.SetHttpHeadersAsync(blobHttpHeaders);

https://docs.microsoft.com/en-us/dotnet/api/overview/azure/Storage.Blobs-readme

 await blobClient.SetMetadataAsync(metadata);

Important: properties that are not set are deleted, so get a properties object with all the properties, change the ones

you want, and then set them all.

You can also create and delete containers using the blob container object methods CreateIfNotExistsAsync() and

DeleteIfExistsAsync().

When several users or processes simultaneously access the same storage account, Azure provides a leasing mechanism

to handle contention. When you acquire a lease to a blob or container, you get exclusive write and delete access to that

blob or container.

Data archiving and retention – hot, cool, and archive storage

Azure provides three different access tiers with different price and performance: hot, cool, archive.

• Hot: frequently accessed data.

• Cool: infrequently accessed. Stored for at least 30 days.

• Archive: rarely accessed and stored for at least 180 days. Available for blobs only – cannot configure a Storage

Account with this tier.

Cooler tiers have lower storage costs, but higher access costs. Archive tier blobs are stored offline and must be

rehydrated to access them – rehydrating can take up to 15 hours with standard rehydration, or one hour with high

priority rehydration ($$$).

A default online access tier of Hot or Cool can be set for the storage account. The default is Hot. The archive access tier

can only be set at the blob level. Block blob access Tier can be set to Hot, Cold, or Archive.

Access Tiers are only available to Storage-V2 and (Legacy) BlobStorage accounts.

From the Azure portal, you can set the access tier for the storage account by going to the storage account > Settings >

Configuration.

From Azure portal, you can set the access tier for a blob by going to the blob container and then selecting the blob. You

can then change the tier to Hot, Cool, Archive.

You can also change the tier using .NET:

Await blobClient.SetAccessTierAsync(AccessTier.Cool);

And from Azure CLI:

az storage blob set-tier

 --account-key 12345

 --account-name myacct

 --container mycontainer

 --name mypic.jpg

 --tier Cool

You can also change blob tier using lifecycle rules. Go to the storage account > Blob Service > Lifecycle Management >

+Add a rule

Rehydrating Blob Data From Archive Tier

There are two options for rehydrating archive tier blobs:

• copy archived blob to an online tier (recommended option)

• change a blob’s access tier to online.

Priorities available for rehydration:

• standard – takes up to 15 hours

• high priority – may complete in under one hour if blob is under 10 GB in size.

Implement storage policies

Skill: implement storage policies, data archiving, and retention

https://docs.microsoft.com/en-gb/learn/modules/manage-azure-blob-storage-lifecycle/

https://docs.microsoft.com/en-gb/learn/modules/manage-azure-blob-storage-lifecycle/3-blob-storage-lifecycle-policies

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-lifecycle-management-concepts?tabs=azure-portal

https://www.youtube.com/watch?v=R_YrhDD47vk

https://www.youtube.com/watch?v=XIBr4Cn26e8

https://docs.microsoft.com/en-gb/learn/modules/manage-azure-blob-storage-lifecycle/
https://docs.microsoft.com/en-gb/learn/modules/manage-azure-blob-storage-lifecycle/3-blob-storage-lifecycle-policies
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-lifecycle-management-concepts?tabs=azure-portal
https://www.youtube.com/watch?v=R_YrhDD47vk
https://www.youtube.com/watch?v=XIBr4Cn26e8

Lifecycle Management Policies

You want to automate blob transition between Hot, Cool, and Archive storage tiers. There is a default access tier for the

entire blob storage account.

But what if we have thousands of blobs across different containers and we want to instantiate retention policies such

that the access tier will change from say hot to cool if the document hasn’t been modified in at least N number of days?

What if you want to go from cool to archive if files reach a certain threshold? That’s part of the life cycle management.

Go to Add Rule+ and set the retention amounts to create what’s called the Action Set.

Now we can filter within the storage account which blobs we want to apply with this rule definition.

A lifecycle management policy is a collection of rules in a JSON document:

{

 "rules": [

 {

 "name": "rule1",

 "enabled": true,

 "type": "Lifecycle",

 "definition": {

 "filters": {

 "blobTypes": ["blockBlob"],

 "prefixMatch": ["container1/foo"]

 },

 "actions": {

 "baseBlob": {

 "tierToCool": { "daysAfterModificationGreaterThan": 30 },

 "tierToArchive": { "daysAfterModificationGreaterThan": 90 },

 "delete": { "daysAfterModificationGreaterThan": 2555 }

 },

}

 },

 {

 "name": "rule2",

 "type": "Lifecycle",

 "definition": {...}

 }

]

}

Filters can be blobTypes, prefixMatch, blobIndexMatch. Actions can be tierToCool, enableAutoTierToHotFromCool,

tierToArchive, delete. Run condition can be daysAfterModificationGreaterThan or daysAfterCreationGreaterThan.

Storage Access Policies

Storage access policies provide us with an additional level of control over SAS. The policy overrides the restrictions (time

and permissions) of a SAS. SAS is not available at the container level, but access policy is.

To add stored access policies from the Azure Portal, select a storage resource and go to Settings > Access Policy

3. Implement Azure security (20-25%)

3.1 Implement user authentication and authorization

• create and implement shared access signatures

• authenticate and authorize users and apps by using Azure Active Directory

• authenticate and authorize users using Microsoft Identity Platform

https://docs.microsoft.com/en-us/azure/active-directory/develop/reference-app-manifest

Security principal can be a signed-on user, a group, a service principal (headless process), or a managed identity.

https://docs.microsoft.com/en-us/azure/active-directory/develop/reference-app-manifest

In Azure AD, an App Manifest is the definition of an application object within the Microsoft Identity Platform. The

application manifest contains a definition of all the attributes of an application object in the Microsoft identity platform.

It includes configuration for authentication and authorization. Example of an App Manifest:

Common App Manifest attributes:

• appId unique identifier for the app that is assigned to an app by Azure AD

• appRoles the collection of roles that an app may declare

• groupMembershipClaims the groups claim issued in an access token that the app expects. Supported values:

o None

o SecurityGroup – security groups and Azure AD roles

o ApplicationGroup – includes only groups that are assigned to the application

o DirectoryRole – the Azure AD roles the user is a member of

o All – all of the Azure AD groups and roles that the signed-in user is a member of

• optionalClaims the collection of optional claims returned by the security token service for this specific app

• oauth2AllowImplicitFlow whether this web app can request OAuth2.0 implicit flow access tokens. The default is

false. This flag is used for browser-based apps, like JavaScript single-page apps.

• oauth2permissions the collection of OAuth 2.0 permission scopes that the web API (resource) app exposes to

client apps. These permission scopes may be granted to client apps during consent.

• signInUrl the URL to the app's home page

• signInAudience what Microsoft accounts are supported for the current application . Supported values:

o AzureADMyOrg

o AzureADMultipleOrgs

o AzureADandPersonalMicrosoftAccount

o PersonalMicrosoftAccount

Applications can have their own roles (appRoles in the manifest).

Once roles are added to the application, you can assign them to the application’s users.

The roles will then appear in the Microsoft Identity Platform id tokens and access tokens.

In your .Net application code, you can authorize based on these roles.

Privileged Identity Management

Privileged Identity Management (PIM) is a feature for protecting privileged admin accounts in Azure AD.

Mutual TLS Authentication

Mutual TLS authentication is used for SSL certificates in Azure App Service. The certificate is in the X-ARR-ClientCert

HTTP header. It is Base64 encoded. The mutual TLS authentication service will not validate the certificate for you, it will

simply make sure that it's present in the HTTP header. You have to write code in your application to validate the

certificate.

 Shared Access Signature (SAS)

Skill: create and implement shared access signatures

When working with storage accounts, you need to control who and how much time a process, person, or application can

access your data.

• Shared Key Authorization – use one of the two access keys configured at the Azure Storage account level. Azure

Storage account keys are like the root password of the Azure Storage account. The client embeds the shared key

in the HTTP Authorization header of every request, and the Storage account validates the key. If the primary key

is compromised, change each app to use the secondary key and regenerate the primary key. Consider this as the

new secondary key.

• Shared Access Signature – use Shared Access Signatures (SAS) for narrowing the access to specific containers

inside the Storage Account. The advantage of using SAS is that you don’t need to share the Azure Storage

account’s access key. You can also configure a higher level of granularity when setting access to your data.

Three types of SAS

1. User-delegation SAS – we’re not using the storage account key to sign this signature; we’re using the user’s account

credentials. Available for blob storage use only.

2. Service SAS (with stored access policy) – scoped to a specific service within your storage account. Service SAS is

secured with a storage account key and delegates access to a resource in only one of Azure storage services (blob,

file, queue, or table). Service SAS is also linked to a Stored Access Policy.

3. Account SAS – scoped to one or more services within your storage account. Combines all operations available to user

and service SAS plus additional operations that apply to services such as get/set service properties; secured with a

storage account key and delegates access to a resource in one or more of Azure storage services (blob, file, queue,

or table).

User-delegation SAS and account SAS types are Ad Hoc – you put in things like start time and expiration. With the service

SAS type, the Stored Access Policy has the start time and expiration.

User-delegation SAS is considered to be a best practice because it uses Azure AD credentials instead of the storage

account key – use whenever possible (available for Blob storage only).

You can configure each SAS with a different level of access:

Services

grant access to only the services required (blob, file, queue, or table)

Resource types

grant access to a service, container, or object

Permissions

configure the permissions the user is allowed to perform

Expiration

configure the period for which the SAS is valid

IP address

grant access to a single IP address or range of IP addresses

Protocol

HTTPS-only or HTTP and HTTPS. You cannot grant access to HTTP-only

You append the SAS token to the URL that you use for accessing your storage resource. One of the parameters of a SAS

token is the signature. The Azure Storage Account service uses this signature to authorize access to the storage

resources.

Accounts that store user data have two typical designs:

• Clients upload and download data through a front-end proxy service, which performs authentication. This design

becomes complicated or expensive to scale for high volume transactions.

• A lightweight service authenticates the client, as needed. Next, it generates a SAS. After receiving the SAS, the

client can access storage account resources directly.

Azure AD

Skill: authenticate and authorize users and apps by using Azure Active Directory

An Azure subscription has a trust relationship with Azure Active Directory (Azure AD). A subscription trusts Azure AD to

authenticate users, services, and devices. Multiple subscriptions can trust the same Azure AD directory. Each

subscription can only trust a single directory.

Trust relationship between Azure AD and Subscriptions

Azure AD – Register Apps

Before your application can use the Azure AD service for authenticating users, you need to register the application in

your Azure AD tenant. This establishes a trust relationship between the app and Microsoft Identity Platform.

To register your app: Azure Portal > Azure Active Directory > Manage > App Registrations > follow wizard

Your application needs to use certificates and secrets to provide the application’s identity when requesting a token. As

with any other authorization system in C#, you need to add the [Authorized] attribute to any resource that you want to

protect.

Typically, you create an appsetting for the ClientId and pass it in when your app interacts with Azure. You get the value

of ClientId from the Azure Portal, Azure AD blade when you register the app.

Azure AD – Authenticate Users

You need to consider whether the users of your application would be

• Users from your organization only Any person that have a user account in your Azure Active Directory tenant

would be able to use your application.

• Users from any organization You use this option when you want any user with a professional or educational

Azure Active Directory account to be able to log into your application.

• Users from any organization or Microsoft accounts You use this option if you want your users to log into your

application by using professional, educational, or any of the freely available Microsoft accounts.

Azure AD – Federated Services

Azure AD Federated Services provides simplified web single sign-on (SSO) capabilities, enabling users access resources in

Azure with on-premises credentials. Identity federation gives users access to Azure applications by confirming their

credentials through the on-premises directory.

RBAC – Control Access to Resources

Azure RBAC is an authorization system built on Azure Resource Manager that provides fine-grained access management

of resources in Azure. You grant access by assigning the appropriate role to users, groups, and applications. The scope of

a role assignment can be a subscription, a resource group, or a single resource. A role assigned at a parent scope also

grants access to the child scopes contained within it.

In the Azure Portal, RBAC is managed for a resource by selecting the Access Control (IAM) pane for that resource.

To create a role assignment, you need three elements: a security principal, a role definition, and a scope. Think of these

elements as "who", "what", and "where".

A role assignment is the process of binding a role definition to a security principal at a particular scope, for the purpose

of granting access.

Four fundamental built-in roles:

• Owner – full access to all resources, including the right to grant access to others

• Contributor – create and manage all types of Azure resources, but can’t grant access to others

• Reader – view existing Azure resources

• User Access Administrator – manage user access to Azure resources

Azure RBAC is an allow model. So, if one role assignment grants you read and a different role assignment grants you

write, you will have read and write permissions on that resource group. NotActions are subtracted from Actions to

compute the effective permissions.

Authenticate and authorize users using Microsoft Identity Platform

Skill: authenticate and authorize users using Microsoft Identity Platform

https://www.youtube.com/watch?v=uDU1QTSw7Ps

https://docs.microsoft.com/en-us/learn/paths/m365-identity-associate/

https://www.youtube.com/watch?v=uDU1QTSw7Ps
https://docs.microsoft.com/en-us/learn/paths/m365-identity-associate/

https://docs.microsoft.com/en-us/learn/modules/getting-started-identity/

https://docs.microsoft.com/en-us/learn/modules/getting-started-identity/2-different-token-types

https://docs.microsoft.com/en-us/azure/active-directory/develop/

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals

https://docs.microsoft.com/en-us/azure/storage/common/storage-auth-aad-app

The Microsoft Identity Platform is the next version of Azure AD, Microsoft’s hosted identity management service. The

Microsoft Identity Platform provides an authentication service, open-source libraries, and application management

tools. It offers users a unified way to authenticate into apps with work, school, or personal accounts.

For developers, it’s an evolution of Azure AD.

Authentication Service Open-Source Libraries Application Management

• Azure Active Directory

• Azure AD Connect

• ADFS (federated service)

• So much more...

• MSAL (authentication library)

• Microsoft.Identity.Web

• OpenID connect

• Gallery and non-gallery apps

• Single Tenant and Multi-Tenant apps

• Authorization

• Consent

• Logs

• And much more ...

Basics of modern authentication:

1. Apps request tokens from Microsoft Identity

2. Authentication happens over shared web surfaces to provide SSO

3. App passes Access Token to API

4. API validates Access Token before returning the result

The MSAL library wraps the complexity of working at the protocol level, by providing straightforward methods with

behind-the-scenes capabilities such as passwordless authentication, MFA, and SSO. The vast majority of modern

authentication can be performed by asking the MSAL library to sign in the user:

MSAL.loginPopup() simply ask to sign in the user – implicitly supports all of the ways that a
user could authenticate

https://docs.microsoft.com/en-us/learn/modules/getting-started-identity/
https://docs.microsoft.com/en-us/learn/modules/getting-started-identity/2-different-token-types
https://docs.microsoft.com/en-us/azure/active-directory/develop/
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/storage/common/storage-auth-aad-app

MSAL.acquireTokenSilent() get access tokens silently without interrupting the user’s flow

MSAL.acquireTokenPopup() if Microsoft Identity does need to talk to the user, then it falls back to
acquiring the access tokens interactively

Modern authentication refers to protocols that scale to the size of the internet. They can provide secure access to users

and devices that are outside the corporate network. There is a clear distinction between the identity provider who

provides authentication services, and the service provider that needs to verify the user’s identity in order to grant access

to secure resources. The application is no longer concerned with managing user credentials – they rely on claims (or

characteristics) of the user. To keep these claims safe, modern authentication protocols such as the Microsoft Identity

Platform, have mechanisms to verify that their values haven’t been tampered with. Modern authentication protocols

are also stateless. The identity provider never remembers which party a given authentication request was for, and the

reliant party doesn’t remember which identity provider was used to perform authentication.

Use case 1: client app wants to authenticate a user to sign in and allow user to access the client app itself => ID token.

An ID token is a security token that allows the client to verify the identity of the user.

Use case 2: client app wants to authenticate user and get user’s consent to access resources from another source

(resource provider) on behalf of the user => access token. Access tokens enable clients to securely call APIs protected by

Azure AD.

Developers also need to think about user provisioning. How do your customers add their users to your application?

Developers should use Azure AD with a SCIM endpoint. Microsoft Identity Platform builds on SCIM, an industry standard,

so that Microsoft Identity Platform works across the identity industry.

Microsoft Identity Platform also performs publisher verification so that users are more accepting of your application by

providing them with confidence that they are getting the right application.

Microsoft Identity Platform gives developers:

• libraries for implementing standards-based authentication & authorization

• identity protection and conditional access

• easy access to Microsoft 365 data from Microsoft Graph

• user provisioning through Azure AD

• publisher verification

Azure AD B2B enables users in an organization to securely share files and resources with users in another organization.

Azure AD B2C enables an organization to provide customer facing apps that enable users to sign in with an identity that

they already have (facebook, gmail, …) or create an account for the solution.

Microsoft Graph is a gateway to the cloud. It allows developers to build applications that can provide users with access

to their data, by authenticating with Microsoft Identity.

OpenID Connect extends the OAuth 2.0 authorization protocol to be used as an authentication protocol, allowing you to

implement single sign-on (SSO). It uses an ID token – a JSON Web Token (JWT) security token – that allows the client to

verify the identity of the user, contains basic profile info about the user, and claims about the user. Access tokens – a

JSON Web Token (JWT) security token – that enable clients to securely call APIs protected by Azure AD.

Microsoft Authentication Library (MSAL) is a well-maintained OpenID Connect library that is kept up to date by Microsoft

to ensure that your implementation is as secure as possible.

Single Tenant apps: single AD directory – no one outside your organization can sign in and use the application.

Multi-tenant apps: multiple AD directories – more than just users from your organization can sign in and use the

application. Multi-tenant apps can also allow users to sign in using their personal Microsoft account. Building multi-

tenant apps can be a challenge because of the different policies that as set by different administrators in different

tenants.

Application object defines what the developer knows about the application (auth params, secrets, certificates,

permissions, roles, …). Azure AD applications are defined by exactly one application object. The application object

resides within the Azure tenant where the app was registered. The application object is the global definition of the app

across all tenants.

Service principal defines how an application will operate within your tenant. The service principal is created when an

application is granted permission to use a resource in a tenant. The service principal is the local instance of the app in a

specific tenant.

Application objects have a one-to-many relationship with service principals.

Azure Function Authorization Levels

• Function

• Anonymous

• Admin

Function and Admin levels require keys.

3.2 Implement secure cloud solutions

• secure app configuration data by using the App Configuration and Azure Key Vault

• develop code that uses keys, secrets, and certificates stored in Azure Key Vault

• implement solutions that interact with Microsoft Graph

Secure App Configuration Data

Skill: secure app configuration data by using the App Configuration and Azure Key Vault

Although you can create configuration settings for your Azure App Services separately for each instance, it’s easier to

manage when you use a centralized configuration service.

Azure App Configuration Service

Azure App Configuration service is a centralized configuration service that allows you to share the same configuration

between different Azure App Service instances. You can also use it with containerized applications or with applications

running inside virtual machines. When you work with Azure App Configuration, you need to deal with two different

components: The App Configuration store and the SDK.

You create key-value pairs for storing your configuration and you use the key for retrieving the value from the store. You

can also add a label attribute to a key. By default, the label attribute is null. You can use the label for making values

different using the same key. This is especially useful when used for deployment environments: The following three

examples are different keys because the labels are different:

• Key = AppSample:DBConnection – Label = Development

• Key = AppSample:DBConnection – Label = Staging

• Key = AppSample:DBConnection – Label = Production

To use Azure App Configuration service from code, you can use a connection string for non-production environments,

but you should consider using Managed Service Identity for production environments, instead of using connection

strings.

Azure Key Vault

Azure Key Vault allows you to securely store keys, secrets, certificates, and any other sensitive settings that your

application may need. You can use the Azure Key Vault in conjunction with Azure App Configuration by creating

references in Azure App Configuration to items stored in the Azure Key Vault. You can store Key Vault information in

software or hardware security module (HSM), but HSM requires the Premium sku. By default, the Key Vault endpoint is

publicly available, but can be secured using VNets and NSGs. Key Vault is available under two different sku’s, Standard

and Premium.

When adding a secret to Key Vault, Azure creates a URL so that the secret can be accessed programmatically.

Azure Key Vault references are strings which include a special prefix that we can use within our configuration settings. It

will take care of configuring a managed identity to go and get this value from Azure Key Vault.

(See: https://docs.microsoft.com/en-us/azure/app-service/app-service-key-vault-references)

Azure Key Vault lets you control permissions for users, developers and administrators. You can receive logging so you

always know how your secrets are accessed.

Main benefits:

• Separation of sensitive info from code

• Restricted access with access policies

• Centralized secret storage

• Logging and monitoring

Creating a key vault from the portal: All services > Key vaults > +Create > follow wizard

Creating a Key Vault with PowerShell:

New-AzKeyVault -VaultName ‘MyVault’ -ResourceGroupName ‘rg-101’ -Location ‘East US’

Creating a Key Vault with CLI:

az keyvault create --resource-group ‘rg-101’ […optional parameters…]

Soft delete key vault allows you to recover accidentally deleted secrets or even whole key vaults within the retention

period (7 to 90 days). You can force a hard delete using the PURGE operation, unless Purge-Protection is enabled.

https://docs.microsoft.com/en-us/azure/app-service/app-service-key-vault-references

There is only one built-in RBAC role to configure access to the management plane: Key Vault Contributor. This role gives

access to manage the key vault without access to the data. You can also create custom roles for the management plane.

PowerShell command to assign role to a user

New-AzRoleAssignment `

 --UserPrincipalName “rob@home.com” `

 --Scope ($myKeyVault).ResourceId `

 --RoleDefinitionName “Key Vault Contributor”

To configure access to the key vault data plane, we use access policies. Access policies are applied to all objects in a key

vault of a given type (keys, secrets, or certificates). Access policies assign permissions to an Azure AD object (application,

group, or user). Permissions include things like get, set, list, create, delete, etc.

PowerShell command to assign key vault access policy to a user

Set-AzKeyVaultAccessPolicy `

 --VaultName “MyVault” `

 --ResourceGroupName “MyRg” `

 --PermissionsToSecrets (“get”,”list”,”set”) `

 --PermissionsToKeys (“get”,”list”,”create”) `

 --UserPrincipalName “rob@here.xyz”

To secure a key vault’s public endpoint, make a private endpoint inside a VNet, secured by NSG.

Once your key vault has been adequately secured, you can start adding keys, certificates, or secrets to your key vault

using the Azure Portal, command line, or API/SDK. For example:

PowerShell command to create a key in key vault

Add-AzKeyVaultKey `

 --VaultName “MyKeyVault” `

 --Name “MyKey”

Manage keys, secrets, and certificates by using the Key Vault API

Skill: develop code that uses keys, secrets, and certificates stored in Azure Key Vault

https://docs.microsoft.com/en-us/learn/modules/manage-secrets-with-azure-key-vault/

https://docs.microsoft.com/en-us/learn/modules/manage-secrets-with-azure-key-vault/5-access-secrets-from-web-

app?pivots=csharp

https://docs.microsoft.com/en-us/learn/modules/manage-secrets-with-azure-key-vault/
https://docs.microsoft.com/en-us/learn/modules/manage-secrets-with-azure-key-vault/5-access-secrets-from-web-app?pivots=csharp
https://docs.microsoft.com/en-us/learn/modules/manage-secrets-with-azure-key-vault/5-access-secrets-from-web-app?pivots=csharp

Using Identity Access Management and RBAC, you can configure access policies for granting access to your Key Vault.

Developers no longer need to store this sensitive information on their computers, and you can apply fine-grained access

control, allowing access to specific secrets only.

Getting a token from Azure Active Directory requires a secret or certificate because anyone with a token could use the

app identity to access all of the secrets in the vault. Managed Identities for Azure resources is an Azure feature that your

app can use to access Key Vault and other Azure services without having to manage even a single secret outside of the

vault.

The Azure Key Vault API is a REST API that handles all management and usage of keys and vaults. Each secret in a vault

has a unique URL, and secret values are retrieved with HTTP GET requests.

With ASP.NET Core's AddAzureKeyVault method, you can load all the secrets from a vault into the Configuration API at

startup. This technique enables you to access all of your secrets by name using the same IConfiguration interface you

use for the rest of your configuration. Apps that use AddAzureKeyVault require both Get and List permissions to the

vault. AddAzureKeyVault only requires the vault name as an input. It automatically handles managed identity

authentication — when used in an app deployed to Azure App Service with managed identities for Azure resources

enabled, it will detect the managed identities token service and use it to authenticate.

To use the Key Vault .NET API, you need Microsoft.Azure.KeyVault package (available from NuGet). Your application

authenticates using its service principal so Azure will know who you are. You then need to get an access token for

authenticating with the Azure Key Vault. You create a KeyVaultClient object that is responsible for the communication

with the Azure Key Vault services.

// components of the secret’s URL

var vaultName = “MyKeyVault”;

var objectType = “secrets”;

var secretName = “MySecret”;

var version = “2”;

var baseURL = $“https://{vaultName}.vault.azure.net”;

// get authenticated key vault client

var provider = new AzureServiceTokenProvider(); // uses service principal

var tokenCB = provider.KeyVaultTokenCallback;

var authCB = new KeyVaultClient.AuthenticationCallback(tokenCB);

var client = new KeyVaultClient(authCB);

// get value of secret

var secret = await client.GetSecretAsync($”{baseURL}/{objectType}/{secretName}/{version}”);

console.log($”{secret.value}”;

// create new secret

secretName = “NewSecret”;

await client.SetSecretAsync(baseURL, secretName, “This is a secret value.”);

// delete a secret

await client.DeleteSecretAsync(baseURL, secretName);

The Key Vault API provides specialized methods (Get, List, Set, Delete) for each item type (secrets, keys, certificates).

Most of the methods that work with items require the vault URL and the name of the item that you want to access. If

you try to create a new secret, key, or certificate using the same name of an object that already exists in the vault, you

are creating a new version of that object.

You can also access your key vault secrets through other types of code such as ARM templates or CLI. For example

az keyvault create \

 --resource-group learn-950b3a03-fe30-4c1f-815d-d259db8eff26 \

 --location centralus \

 --name ridvaultname

az keyvault secret set \

 --name SecretPassword \

 --value reindeer_flotilla \

 --vault-name ridvaultname

Implement solutions that interact with Microsoft Graph

Skill: implement solutions that interact with Microsoft Graph

https://docs.microsoft.com/en-us/learn/paths/m365-msgraph-associate/

https://docs.microsoft.com/en-us/learn/modules/msgraph-build-aspnetmvc-apps/

https://docs.microsoft.com/en-us/graph/overview

https://developer.microsoft.com/en-us/graph/get-started

Microsoft Graph is a REST API that can be used to interact with Microsoft 365. Microsoft 365 is a term that encompasses

the collection of products and services Microsoft has to offer, including Office 365. Microsoft Graph is a unified

programming model to access the tremendous amount of data in the cloud. It is a proxy, which serves as the gateway to

all your data in the Microsoft Cloud. Microsoft Graph enables developers to build applications that provide users access

to their data. Developers and users can access their data with Microsoft Graph by authenticating and authorizing users

with Microsoft identity framework. It’s also an API that you can use to connect to a variety of Office 365 services as well

as Azure – it provides a single end point and tools to connect to all of these services. Microsoft Graph is a restful API to

expose data over ‘https’ so it is secure. Microsoft Graph is secured with Azure AD, which means that developers will

need to authenticate with Azure AD and obtain an OAuth access token. Microsoft Graph, acting as a proxy to many of

the services in the Microsoft cloud, provides access via a single top-level endpoint, https://graph.microsoft.com.

https://docs.microsoft.com/en-us/learn/paths/m365-msgraph-associate/
https://docs.microsoft.com/en-us/learn/modules/msgraph-build-aspnetmvc-apps/
https://docs.microsoft.com/en-us/graph/overview
https://developer.microsoft.com/en-us/graph/get-started

Apps only need to authenticate once and obtain a single access token that can be used to retrieve data from multiple

sources, greatly simplifying the development process.

Accessing the Microsoft Graph

Direct REST API – any platform, language, or framework; Native SDKs – utilizes different implementations, abstracts the

details of REST requests over HTTP, .NET, IOS, Android, Php, etc.

Graph Explorer is a tool to query all the protected data.

Microsoft Graph App Patterns

Scenario: A Web app calling Graph

https://docs.microsoft.com/azure/active-directory/develop/scenario-web-app-call-api-overview

Scenario: A Desktop app calling Graph

https://docs.microsoft.com/azure/active-directory/develop/scenario-desktop-overview

https://docs.microsoft.com/azure/active-directory/develop/scenario-web-app-call-api-overview
https://docs.microsoft.com/azure/active-directory/develop/scenario-desktop-overview

Scenario: A Web API calling Graph

https://docs.microsoft.com/azure/active-directory/develop/scenario-web-api-call-api-overview

Scenario: A Daemon app calling Graph

https://docs.microsoft.com/azure/active-directory/develop/scenario-daemon-call-api?tabs=dotnet

https://docs.microsoft.com/azure/active-directory/develop/scenario-web-api-call-api-overview
https://docs.microsoft.com/azure/active-directory/develop/scenario-daemon-call-api?tabs=dotnet

Scenario: A Browserless app calling Graph

https://docs.microsoft.com/azure/active-directory/develop/v2-oauth2-device-code

Scenario: A Mobile app calling Graph

https://docs.microsoft.com/azure/active-directory/develop/scenario-mobile-overview

https://docs.microsoft.com/azure/active-directory/develop/v2-oauth2-device-code
https://docs.microsoft.com/azure/active-directory/develop/scenario-mobile-overview

4. Monitor, troubleshoot, and optimize solutions (15-20%)

This chapter discusses monitoring, troubleshooting, and optimizing Azure solutions.

4.1 Integrate caching and content delivery within solutions

• configure cache and expiration policies

• configure cache and expiration policies for Azure Redis Cache

• Implement secure and optimized application cache patterns including data sizing,

connections, encryption, and expiration

https://docs.microsoft.com/en-us/azure/cdn/cdn-overview

https://docs.microsoft.com/en-us/learn/modules/create-cdn-static-resources-blob-storage/

https://docs.microsoft.com/en-us/learn/modules/optimize-your-web-apps-with-redis/

https://docs.microsoft.com/en-us/learn/paths/architect-modern-apps/

https://docs.microsoft.com/en-us/learn/modules/work-with-mutable-and-partial-data-in-a-redis-cache/

configure cache and expiration policies

Skill: configure cache and expiration policies

Caching is the act of storing frequently accessed data in memory. You need to control the lifetime and validity of your

application’s objects stored in your cache so that your users see the latest, most up-to-date content. When you replace

an object on the server, you need to also replace it in cache. This is sometimes done manually through purging or file

renaming.

When you cache an object, you assign it a time-to-live (TTL). Once the TTL has expired, the cache checks the file in the

cache against the file on the host. If they are the same, then the TTL is reset. If they are different, then the cached file is

replaced and assigned a new TTL. TTL is controlled by setting the max-age cache-control HTTP header on the web server.

This can be done in different ways:

• Caching policies (rules) can be used to control how TTL values are assigned. You can create global rules for all objects

within the cache, or you can use custom rules for different file types or paths within your app.

• In ASP.NET web applications you can control the TTL by setting the ClientCache property in the web.config file.

• Also, in .ASP.NET you can control the caching behavior by setting the HttpResponse.Cache property

programmatically.

Web.config example:

https://docs.microsoft.com/en-us/azure/cdn/cdn-overview
https://docs.microsoft.com/en-us/learn/modules/create-cdn-static-resources-blob-storage/
https://docs.microsoft.com/en-us/learn/modules/optimize-your-web-apps-with-redis/
https://docs.microsoft.com/en-us/learn/paths/architect-modern-apps/
https://docs.microsoft.com/en-us/learn/modules/work-with-mutable-and-partial-data-in-a-redis-cache/

<?xml version=”1.0”?>

<configuration>

 <system.webserver>

 <staticcontent>

 <clientcache cachecontrolmode=”UseMaxAge” cachecontrolmaxage=”3.00:00:00” />

 </staticcontent>

 </system.webserver>

</configuration>

Programmatic example:

public class HomeController: Controller

{

 public ActionResult Index()

 {

 Response.Cache.SetExpires(DateTime.Now.AddHours(1));

 Response.Cache.SetCacheability(Public);

 Response.Cache.SetLastModified(DateTime.Now);

 Return View();

 }

}

Azure CDN Cache Configuration

Azure CDN supports two approaches for configuring caching:

• global caching rule (overrides HTTP cache headers)

• custom caching rules (overrides global caching rule)

Azure CDN cache duration behavior:

• Bypass Cache – don’t cache anything and ignore cache headers

• Override – ignore cache duration in headers, use config values

• Set if Missing – uses the config value if duration header is missing

Azure CDN query string handling:

• Bypass Caching – asset is not cached, query string always passed to origin

• Ignore Query String – query string is only used on initial fetch from origin (default)

• Cache Every Unique URL – URL with query string used to set cache value

configure cache and expiration policies for Redis caches

Skill: configure cache and expiration policies for Azure Redis Cache

https://docs.microsoft.com/en-us/learn/modules/optimize-your-web-apps-with-redis/

https://docs.microsoft.com/en-us/learn/modules/aspnet-session/

https://docs.microsoft.com/en-us/learn/modules/optimize-your-web-apps-with-redis/
https://docs.microsoft.com/en-us/learn/modules/aspnet-session/

Redis (REmote DIctionary Server) cache is an open-source, in-memory key value pair store. It can be used as a database,

cache or message broker. Azure Cache for Redis is typically used to improve the performance of systems that rely

heavily on back-end data stores. Your cached data is located in-memory on an Azure server running the Redis cache as

opposed to being loaded from disk by a database. Each data value is associated to a key that can be used to look up the

value from the cache.

Guidelines for choosing keys:

• Avoid long keys.

• Use keys that can identify the data. For example, "sport:football;date:2008-02-02" is better than “fb:8-2-2”.

• Use a convention such as "object:id", as in "sport:football".

Data is stored in Redis by using nodes and clusters. A node is a single storage location and a cluster is a set of three or

more nodes.

You can create a Redis cache using the Azure portal, the Azure CLI, or Azure PowerShell. To connect to an Azure Cache

for Redis instance, you'll need the host name, port, and an access key for the cache. You can retrieve this information in

the Azure portal through the Settings > Access Keys page. Azure also offers a connection string which bundles this data

together into a single string.

Typically, a client application will use a client library, such as StackExchange.Redis for .NET, to execute commands on a

Redis cache. The main connection object is the ConnectionMultiplexer class, which abstracts the process of connecting

to a Redis server. It's optimized to manage connections efficiently and intended to be kept around while you need

access to the cache. Once you are done with the Redis connection, you can Dispose the ConnectionMultiplexer. This will

close all connections and shutdown the communication to the server.

Configure Redis Cache

Set these parameters:

Name The name has to be unique within Azure because it is used to generate a public-facing URL to
connect and communicate with the service.

Resource
Group

You can either create a new resource group, or use an existing one.

Location Determine where the Redis cache will be physically located by selecting an Azure region. Important:
Put the Redis cache as close to the data consumer as you can. Connecting to a cache in a different
region can significantly increase latency and reduce reliability.

Pricing tier
(sku)

Basic, Standard, Premium. You can control the amount of cache memory available on each tier by
choosing a cache level (vm-size) from C0-C6 for Basic/Standard and P0-P4 for Premium. Microsoft
recommends you always use Standard or Premium Tier for production systems. Also, use at least a
C1 cache. C0 caches are meant for simple dev/test scenarios. Premium also allows you to:

• configure data persistence for disaster recovery

• deploy Redis cache to a virtual network for security

• implement clustering to automatically split your dataset among multiple nodes

cache level
(vm-size)

The size of the Azure Cache for Redis. Valid values are C0, C1, C2, C3, C4, C5, C6, P1, P2, P3, P4.

Example:

az redis create \

 --name "MyCache" \

 --resource-group [sandbox resource group name] \

 --location eastus \

 --sku Basic \

 --vm-size C0

Redis Cache Expiration Policy

Data expiration is a feature that can automatically delete a key and value in the cache after a set amount of time. Since

you have limited storage with Azure Cache for Redis, you want to make sure you're only storing data that is important.

Redis console commands to implement and manage data expiration:

• EXPIRE sets the timeout of a key

• TTL returns the remaining time a key has to live

• PERSIST makes a key never expire

Alternatively, using the C# ServiceStack.Redis package:

public static void SetGroupChatName(string groupChatID, string chatName)

{

 using (RedisClient redisClient = new RedisClient(redisConnectionString))

 {

 //Create a key for group chat display names

 string key = groupChatID + "displayName";

 //Set the group chat display name

 redisClient.SetValue(key, chatName);

 //Set the expiration for one hour

 redisClient.Expire(key, 3600); // Note: same effect as EXPIRE command from console

 }

}

The default TTL for Redis Cache is infinity (never expires). If you haven’t set a TTL for an item in Redis Cache, you need to

manually remove that item. Use the Redis commands: KeyDelete or FlushAllDatabases.

Redis Cache Eviction Policy

Memory is the most critical resource for Azure Cache for Redis, because it's an in-memory database. Azure Cache for

Redis supports max-memory eviction policies, which indicate how data should be handled when you run out of memory.

There are six different max-memory eviction policies:

volatile-LRU
default

evict the least recently used (LRU) keys first, among keys that have an expiry set

volatile-TTL evict keys with a shorter TTL first, among keys that have an expiry set

volatile-random evict keys randomly, among keys that have an expiry set

allkeys-LRU evict the least recently used (LRU) keys first

allkeys-random evict keys randomly

noeviction return errors when the memory limit was reached

To set the eviction policy for Azure Cache for Redis, from Azure Portal go to the Redis and select Advanced Settings >

maxmemory-policy

Store and retrieve data in Azure Redis cache

Using any of the .NET languages, you can use the StackExchange.Redis client for accessing your Azure Cache for Redis

resource. You can also use this Redis client for accessing other Redis implementations. When reading or writing values in

the Azure Cache for Redis, you need to create a ConnectionMultiplexer object that creates a connection to your Redis

server. Creating a connection is a costly operation. For this reason, you should not create a ConnectionMultiplexer

object for each read or write operation, you should store this object and reuse it across all your code.

Implement secure and optimized application cache patterns including data sizing, connections, encryption, and expiration

Skill: Implement secure and optimized application cache patterns including data sizing, connections, encryption, and

expiration

https://docs.microsoft.com/en-us/learn/modules/optimize-your-web-apps-with-redis/

Cache-Aside Pattern

The application will try to read data from the cache first. If the requested data is not in the cache, the application will

retrieve it from the database and then it stores the data in the cache for subsequent requests. Next time when any user

requests the data, it will return it from the cache directly.

Now that your data is stored in a cache and a data store, you can run into problems when you try to make an update.

Should you update both the cache and the data store? In the cache aside pattern, you invalidate the data in the cache

and then make the changes to the data source directly.

https://docs.microsoft.com/en-us/learn/modules/optimize-your-web-apps-with-redis/

Content Cache Pattern

Cache static content (images, templates, style sheets). Content caching reduces the load on your server, thereby

increasing application performance (see Redis Output Provider for ASP.NET).

User Session Cache Pattern

User sessions can be stored in Redis Cache to maintain application state between browser sessions (for example:

shopping cart). Traditionally this is done with session cookies or local storage API, but these have limitations such as

limited storage and slow performance. Instead, we can use a key and store the data in Redis Cache.

Job and Message Queuing Pattern

Applications often use queues to handle long-running tasks. Long running tasks can negatively affect application

performance, so you can offload them onto a queue where they will run in sequence. This can improve application

performance and scalability.

Distributed Transactions Pattern

A transaction against a back-end data store runs as a single atomic operation. Redis cache allows you to execute a batch

of commands as a single transaction.

4.2 Instrument solutions to support monitoring and logging

• configure an app or service to use Application Insights

• analyze and troubleshoot solutions by using Azure Monitor

• implement Application Insights Web Test and Alerts

See text book page 219 Skill 4.2: Instrument solutions to support monitoring and logging

Using Application Insights

Skill: configure an app or service to use Application Insights

https://docs.microsoft.com/en-us/azure/azure-monitor/app/usage-overview

Application Insights is an extensible application performance management (APM) service. Application Insights is part of

Azure Monitor. You can monitor your application while it is running by using Application Insights. Measurements, known

as telemetry, are automatically sent to Application Insights. Using these telemetry streams, you can analyze your

application’s performance and create alerts and dashboards to help you better understand how your application is

behaving.

Application insights can monitor the following:

• Request/Response data

• Exceptions

• Page views and page loads

• AJAX calls

• User and session counts

• Host diagnostics

https://docs.microsoft.com/en-us/azure/azure-monitor/app/usage-overview

• Trace logs

• Metrics and performance counters

• Custom events

You send messages from your code to Application Insights by using the TelemetryClass class. You can also send log

messages to Application Insights by using the integration between System.Diagnostics and Application Insights. Any

message sent to the diagnostics system using the Trace class appears in Application Insights as a Trace message. You can

use the TraceException() method for sending the stack trace and the exception to Application Insights.

To configure Application Insights, first we create a new Log Analytics workspace, and then we create an Application

Insights resource. The Log Analytics workspace serves as a logical storage for your logs. Next, when you create the

Application Insights resource, you set a property that links it to the Log Analytics workspace that was just created.

+Create a resource > Log Analytics workspace > Create > fill in details (subscription, resource group, etc.) > Review+create

+Create a resource > Application Insights > Create > fill in details including Log Analytics workspace > Review+create

When created, Application Insights has an Instrumentation Key property that we use to connect from our SDK code:

From ASP.NET Core, add NuGet package Microsoft.ApplicationInsights.AspNetCore . Then in the .NET Core Startup class,

in the ConfigureServices() method, we add Application Insights telemetry using the AddApplicationInsightsTelemetry()

method:

This one line of code enables collecting telemetry data in our ASP.NET Core web application. Now we provide the

instrumentation key from the Application Insights workspace. We add the instrumentation key to the appSettings.json

file:

After this, every issue and exception thrown in the application will be reported automatically by the SDK (we can of

course customize this from code to be more selective if we wish). To see the captured information, we go to the Portal

> Application Insights > Overview > Search.

We can select the exception that was thrown in order to drill down for more details.

EXAM TIP: Remember that Application Insights is a solution for monitoring the behavior of an application on different

platforms, written in different languages. There is no requirement to run your application in Azure. You only need to use

Azure for deploying the Application Insights resource that are used by your application.

Application Insights Usage Demographics

Explore usage demographics to find out when people use your app, what pages they're most interested in, where your

users are located, what browsers and operating systems they use.

Users The Users feature is about how many people used your app and its features.

Funnels The progression through a series of steps in a web application is known as a funnel.

Impact The impact feature shows how load time and other properties of particular part of your app affect

the usage for other parts of your app.

Retention how many users return to your app, and how often they perform particular tasks or achieve goals.

User Flows visualizes how users navigate between the pages and features of your site. How do users navigate

away from a page? What do users click on a page? Are there places where users repeat the same

action over and over?

Azure Monitor

Skill: analyze and troubleshoot solutions by using Azure Monitor

Azure Monitor is the central location for your log files, and metrics so you can run queries on them and create graphs.

Depending on the information that you need to analyze, you can use Metric Analytics or Log Analytics. A metric is a

numeric value at a particular point in time of your solution such as CPU usage or free memory; you can also create your

own custom metrics. Because metrics are lightweight, they can monitor scenarios in near real-time. Logs are events that

occurred within the system. They may be structured or free form text with a time stamp.

You use Log Analytics for analyzing the trace, logs, events, exceptions, etc. Log messages are more complex than metrics

because they contain more information than a simple numeric value. You can analyze log messages by using queries to

get information from the data stored in Azure Monitor.

Using Azure Monitor, you can set alerts based on the value of different metrics or logs.

EXAM TIP: When you try to query logs from the Azure Monitor, remember that you need to enable the diagnostics logs

for the Azure App Services.

Application Insights Web Tests and Alerts

Skill: implement Application Insights Web Test and Alerts

You can configure different types of tests for checking the availability of your web application.

• URL ping test – simple test for checking whether an endpoint URL in your application is available.

• Multi-step web test – A recording of a sequence of web requests, which can be played back to test more complex

scenarios.

• Custom test to track availability You can create your own availability test in your code using the TrackAvailability()

method from the SDK.

You can then configure Alerts from Application Insights when one of the tests fail.

Alerts use Action Groups. An Action Group is a collection of notification preferences. Azure Monitor uses action groups

to notify you that an alert has been triggered. The alerts can be configured to do things like send emails. Each action has

the following properties: type, name, action.

Setup availability test

Go to Portal > Application Insights > Investigate > Availability > +Add test > fill in details > Create

Create action group

Go to portal > Application Insights > Rules Management > +Add action group > Save changes

Receive and investigate alert

For email alert types, an alert email will be sent to the configured email recipient:

5. Azure services and third-party services (15-20%)

This chapter discusses connecting and consuming Azure services and third-party services.

5.1 Develop an App Service Logic App – Out of scope

5.2 Implement API Management

• create an APIM instance

• configure authentication for APIs

• define policies for APIs

• import OpenAPI definitions

https://docs.microsoft.com/en-us/azure/api-management/

APIM Definitions

https://docs.microsoft.com/en-us/learn/modules/build-serverless-api-with-functions-api-management/

https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts

API Management (APIM)

Azure API Management is a way to create consistent and modern gateways for existing back-end services. It is

positioned between your APIs and the internet, and provides secure, scalable API access for your applications. It also

enables you to construct an API from a set of disparate microservices. It consists of the following components:

• API gateway – accepts API calls and routes them to your backends, accessible at https://<name>.azure-api.net

• Azure portal – the administrator interface where you set up your API program

• Developer portal – web user interface for developers, accessible at https://<name>.developer.azure-api.net

API Gateway

An Azure API gateway is an instance of the Azure API Management service. It provides a single surface of communication

for client web apps.

https://docs.microsoft.com/en-us/azure/api-management/
https://docs.microsoft.com/en-us/learn/modules/build-serverless-api-with-functions-api-management/
https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts

API

a way to interface with an application without understanding the complexity.

Developer Portal

where developers can read API documentation, get API keys, try out API via interactive console, and access analytics

API Products

are how APIs are surfaced to developers. A product is a collection of APIs that make up a single application that

developers can gain access to. Products have one or more APIs, a title, a description, and terms of use.

API user Groups

are used to manage the visibility of API Products to developers. There are three kinds of API Groups: Administrators,

developers, guests. Each developer is a member of one or more developer groups.

Create an APIM instance

Skill: create an APIM instance

https://docs.microsoft.com/en-us/azure/api-management/quickstart-arm-template

From CLI:

az apim create --name myapim --resource-group myResourceGroup \

 --publisher-name Contoso --publisher-email admin@contoso.com \

 --no-wait

From Portal:

Create a resource > Integration > API Management > fill in details > Create > Review and create

From Powershell:

New-AzApiManagement -Name "myapim" -ResourceGroupName "myResourceGroup" `

 -Location "West US" -Organization "Contoso" -AdminEmail admin@contoso.com

From VS Code:

Azure Extension > Sign in to Azure > Right-click on an Azure subscription > Create API Management in Azure.

From an ARM template:

https://docs.microsoft.com/en-us/azure/api-management/quickstart-arm-template
mailto:admin@contoso.com

azuredeploy.json

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "publisherEmail": {

 "type": "string",

 "minLength": 1,

 "metadata": {"description": "The email address of the owner of the service"}

 },

 "publisherName": {

 "type": "string",

 "minLength": 1,

 "metadata": {"description": "The name of the owner of the service"}

 },

 "sku": {

 "type": "string",

 "defaultValue": "Developer",

 "allowedValues": ["Developer", "Standard", "Premium"],

 "metadata": {"description": "The pricing tier of this API Management service"}

 },

 "skuCount": {

 "type": "string",

 "defaultValue": "1",

 "allowedValues": ["1", "2"],

 "metadata": {"description": "The instance size of this API Management service."}

 }

 },

 "resources": [

 {

 "type": "Microsoft.ApiManagement/service",

 "apiVersion": "2019-12-01",

 "name": "myName",

 "location": "EASTUS",

 "sku": {

 "name": "[parameters('sku')]",

 "capacity": "[parameters('skuCount')]"

 },

 "properties": {

 "publisherEmail": "[parameters('publisherEmail')]",

 "publisherName": "[parameters('publisherName')]"

 }

 }

]

 }

azuredeploy.parameters.json

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "publisherEmail": {"value": "elvis@example.com"},

 "publisherName": {"value": "Elvis"}

 }

}

Using the azure deployment ARM template and parameter file above, the APIM instance is created by deployment to a

resource group as follows:

powershell example

New-AzResourceGroupDeployment `

 -Name myDeployment `

 -ResourceGroupName myResourceGroup `

 -TemplateFile "./azuredeploy.json" ‘

 -TemplateParameterFile "./azuredeploy.parameters.json"

Configure APIM Authentications

Skill: configure authentication for APIs

API products can be Open or Protected. Protected products must be subscribed to before they can be used. Subscription

approval is configured at the product level.

API’s can also be protected from unauthorized web client calls. This is done through subscription keys or through

certificates.

Access keys can be obtained by developers through the developer portal by going to the APIM Account details and

subscriptions page:

The subscription key is used from web client requests by including it with the “Ocp-Apim-Subscription-Key” HTTP

header. Here is how you can make an example call with a subscription key using the Postman utility:

Another way to protect APIs is with certificates. Certificates can be used to provide mutual TLS authentication between

the client and the API gateway. With APIM you configure the gateway to only allow requests with certificates containing

a specific thumbprint. We can configure APIM to accept client certificates as follows:

Go to Azure Portal > API Management service > Security > Certificates > +Add

Under Client certificate pane, provide an id for the certificate; upload the certificate file; provide a password; click the

Add button.

When the certificate is successfully uploaded, APIM will create a thumbprint that we need to copy and use from the

client.

We add the thumbprint to the inbound policy:

Then in the Portal under the API policies, we paste in the code and click Save:

Now when the client calls the API it must provide the certificate and the password.

Define APIM Policies

Skill: define policies for APIs

https://docs.microsoft.com/en-us/learn/modules/improve-api-performance-with-apim-caching-policy/

https://docs.microsoft.com/en-us/learn/modules/protect-apis-on-api-management/

https://docs.microsoft.com/en-us/learn/paths/architect-api-integration/

https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-policies

https://docs.microsoft.com/en-us/azure/api-management/api-management-policies

APIM Policies are a capability of Azure API Management that allow changing the behavior of the API through

configuration, thereby generating consistent behavior across disparate API microservices in a single API Product.

Commonly used APIM policies include: access restriction, authentication and JWT handling, caching, cross-domain, data

transformation

https://docs.microsoft.com/en-us/learn/modules/improve-api-performance-with-apim-caching-policy/
https://docs.microsoft.com/en-us/learn/modules/protect-apis-on-api-management/
https://docs.microsoft.com/en-us/learn/paths/architect-api-integration/
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-policies
https://docs.microsoft.com/en-us/azure/api-management/api-management-policies

APIM policies are a collection of statements that are executed sequentially on the request or response of an API. They

can perform things like: convert format from XML to JSON, restrict the number of incoming calls, enforce existence

and/or value of HTTP header, cache responses according to cache control configuration.

APIM policies can be applied to different scopes:

• Global scope affects all APIs within the APIM instance;

• Product scope manages access to the product as a single entity;

• API scope affects only a single API;

• Operation scope affects only one operation within the API.

They will be applied in this order unless overridden by the <base /> tag in the policy XML file.

There are 4 kinds of policy execution:

• Inbound policies execute when a request is received.

• Backend policies execute before a request is forwarded to a managed API.

• Outbound policies execute before a response is sent.

• On-Error policies execute when an exception is raised.

Polices are defined using XML format.

<policies>

 <inbound>

 <!-- statements to be applied to the request go here -->

 </inbound>

 <backend>

 <!-- statements to be applied before the request is forwarded to

 the backend service go here -->

 </backend>

 <outbound>

 <!-- statements to be applied to the response go here -->

 </outbound>

 <on-error>

 <!-- statements to be applied if there is an error condition go here -->

 </on-error>

</policies>

Example 1:

Example 2 – caching:

To set up a cache, you use an outbound policy named cache-store to store responses. You also use an inbound policy

named cache-lookup to check if there is a cached response for the current request.

Suppose, for example, that the board games Stock Management API received a GET request to the following URL and

cached the result:

http://<boardgames.domain>/stock/api/product?partnumber=3416&customerid=1128

This request is intended to check the stock levels for a product with part number 3416. The customer ID is used by a

separate policy as does not alter the response. Subsequent requests for the same part number can be served from the

cache, as long as the record has not expired.

Now suppose that a different customer requests the same product:

http://<boardgames.domain>/stock/api/product?partnumber=3416&customerid=5238

By default, the response can't be served from the cache, because the customer ID is different. However, requests for the

same product from different customers could be returned from the cache if we vary by partnumber.

<policies>

 <inbound>

 <base />

 <cache-lookup>

 <vary-by-query-parameter>partnumber</vary-by-query-parameter>

 </cache-lookup>

 </inbound>

 <backend>

 <base />

 </backend>

 <outbound>

 <cache-store duration="60" />

 <base />

 </outbound>

 </on-error>

 <base />

 </on-error>

</policies>

Example 3 – http headers:

A common http header found in the response from an API is x-powered-by. This header exposes information about the

platform technology being used, which could be exploited by an attacker.

To remove this header, we use the set-header policy. We replace the default <outbound> tag in the APIM policies file with

this:

<outbound>

 <set-header name="X-Powered-By" exists-action="delete" />

 <base />

</outbound>

Import OpenAPI definitions

Skill: import OpenAPI definitions

https://swagger.io/docs/specification/about/

https://docs.microsoft.com/en-us/learn/modules/improve-api-developer-experience-with-swagger/

Importing OpenAPI Definitions | SwaggerHub Documentation (smartbear.com)

https://youtu.be/pRS9LRBgjYg

https://docs.microsoft.com/en-us/azure/api-management/import-and-publish

https://soltisweb.com/blog/detail/2020-08-19-importingopenapiapiintoazureapim

https://docs.microsoft.com/en-us/azure/api-management/import-api-from-oas

OpenAPI is a description for REST APIs. It comes with a YAML (or JSON) definition file that follows a standardized format

for describing the inputs and outputs, where the API is hosted (endpoints), operations, and what authorization is

required to access it. The OpenAPI Specification defines how to describe a REST API. An OpenAPI enables you to

understand and use a REST API.

OpenAPI comes with some standard tools:

• API validator – checks whether the API confirms to industry standards

• API document generator – generates API reference documentation

• API SDK generator – generates an SDK in the language of your choice

Swagger is an open-source set of tools to design, build, document, and use RESTful web services. It includes automated

documentation, code generation, and test-case generation. OpenAPI is a standard way to describe RESTful API’s, while

Swagger is a toolset built around that standard. Swashbuckle is an open-source Swagger implementation used for

generating Swagger documentation for .NET Core APIs using .NET reflection.

Import an OpenAPI Using Azure Portal

1. In Azure portal, search for and select API Management services.

2. On the API Management services page, select your API Management instance.

https://swagger.io/docs/specification/about/
https://docs.microsoft.com/en-us/learn/modules/improve-api-developer-experience-with-swagger/
https://support.smartbear.com/swaggerhub/docs/apis/importing-api.html
https://youtu.be/pRS9LRBgjYg
https://docs.microsoft.com/en-us/azure/api-management/import-and-publish
https://soltisweb.com/blog/detail/2020-08-19-importingopenapiapiintoazureapim
https://docs.microsoft.com/en-us/azure/api-management/import-api-from-oas

3. API Management instance > +Add API > OpenAPI

4. In the OpenAPI specification field either enter a URL or select and upload a file. The remaining fields will autofill from

the specification.

5. Click the Create button.

Import an OpenAPI using PowerShell

The Azure APIM PowerShell commands allow you to import the OpenAPI via code. For example:

$ApiMgmtContext = New-AzApiManagementContext -ResourceGroupName "my-rg" -ServiceName "my-apim"

Import-AzApiManagementApi -Context $ApiMgmtContext `

-SpecificationFormat "OpenApi" `

-SpecificationPath "C:\Users\Myself\Downloads\my-swagger.yaml" `

-Path "my-path"

PowerShell will return the newly created OpenAPI information.

5.3 Develop event-based solutions

• implement solutions that use Azure Event Grid

• implement solutions that use Azure Notification Hubs

• implement solutions that use Azure Event Hub

https://docs.microsoft.com/en-us/learn/paths/connect-your-services-together/

https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-services/

Event Grid

Skill: implement solutions that use Azure Event Grid

https://docs.microsoft.com/en-us/learn/modules/react-to-state-changes-using-event-grid/

https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-services/4-

choose-event-grid

Event Grid is a routing service that distributes events from different Azure sources, such as Blob storage accounts, to

different Azure handlers, such as Azure Functions or Webhooks.

Event Grid is for discrete events that report state changes and are actionable. If something is listening (subscribed) for

that event, it takes action when the event occurs. Subscribers can add filtering rules so only events get delivered that

match the rules.

https://docs.microsoft.com/en-us/learn/paths/connect-your-services-together/
https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-services/
https://docs.microsoft.com/en-us/learn/modules/react-to-state-changes-using-event-grid/
https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-services/4-choose-event-grid
https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-services/4-choose-event-grid

Event Grid terminology

• Events: What happened.

• Event sources: Where the event took place.

• Topics: The endpoint where publishers send events.

• System topics: built-in topics provided by Azure services, such as a blob storage service.

• Custom topics: are applications and third-party topics.

• Event subscriptions: The endpoint or built-in mechanism to route events, sometimes to multiple handlers.

Subscriptions are also used by handlers to filter incoming events intelligently.

• Event handlers: The app or service reacting to the event.

Workflow

1. Create topic

2. Configure publisher application to send events to that topic

3. Add a subscriber application to the topic

Every event that is sent to a handling application will have a data property containing a message. The message has event

specific information that was provided by the publisher.

Event Grid needs to be enabled. Instead of providing a service like an Azure Function, Event grid is enabled at the

subscription level, by registering a resource provider. This way other services can send events to it. For example (CLI):

az provider register --namespace Microsoft.EventGrid

az provider show --namespace MicrosoftEventGrid --query “registrationState”

Azure Notification Hubs (ANH)

Skill: implement solutions that use Azure Notification Hubs

https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-push-notification-overview

Also see textbook p 287

https://docs.microsoft.com/en-us/azure/notification-hubs/notification-hubs-push-notification-overview

Notification Hub Fundamentals

Notification Hub is for user-notification type events (example: events that prompt user or their device for attention).

Unlike the other 2 types of events that go from application to application, these events are meant to get the attention of

the end user of the application, although there is also a push-notification (server initiated) that is meant only for the

device the application is running on – an example of push-notification is when your phone buzzes to let you know you

have new email.

Namespaces organize hubs. A Namespace is a collection of Notification Hubs. Generally, you create one namespace per

application. Within a namespace you create one notification hub per environment (prod, dev, test). Credentials are

supplied at the namespace level. Billing is done at the namespace level.

Azure Notification Hubs provide an easy-to-use and scaled-out push engine that enables you to send notifications to any

platform (iOS, Android, Windows, etc.) from any back-end (cloud or on-premises). Azure Notification Hubs abstract the

complexities of the different delivery patterns for different notification target platforms.

Workflow

1. Setup vendor specific platform notification service for each platform you want to send notifications to

2. Setup notification hub instance through Azure portal (or CLI, etc.)

3. Map credential keys obtained from platform notification service to notification hub

4. Register devices – can be done with .NET SDK through a web API backend

5. Send pushes – can be done with cross-platform .NET SDK via web API

Event Hub

Skill: implement solutions that use Azure Event Hub

https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-

services/5-choose-azure-event-hubs

Fundamentals

Event Hubs can handle Volume, Variety, and Velocity. Event Hubs is an event ingestion and processing service with time-

retention buffer at the big data scale. Being highly scalable it’s a good fit for Big Data scenarios such as IoT. Much like

Event Grid, Event Hub decouples the producer and consumer of events. Unlike Event Grid, you can integrate Event Hubs

with both Azure and non-Azure services. Event Hub can capture events directly to Azure Blob Storage or Data Lake as

events come in.

Event Hub is for series-type events that report a condition and are time-ordered, and analyzable (example: telemetry).

Event Hubs is an intermediary for the publish-subscribe communication pattern. Unlike Event Grid, however, it is

optimized for extremely high throughput, a large number of publishers, security, and resiliency. Event Hubs can handle

events that exist outside of Azure.

You need to create an Event Hub namespace before creating the Event Hub:

az eventhubs namespace create --name <NAME> /

 --resource-group <NAME> /

 --location <LOCATION> /

 --sku <Basic|Standard>

Once the namespace is created, you can create the Event Hub:

az eventhubs eventhub create --name <NAME> /

 --namespace <NAME> /

 --message-retention 3 /

 -–partition-count 4 /

 -g <GROUP NAME>

Event Hub Terminology

Namespace is a container for one or more Event Hubs. It serves as a scoping container. Any options applied to the

namespace will apply to all of the Event Hubs contained within it (such as pricing). Namespaces have a pre-purchased

unit of capacity, called throughput units, that controls the throughput of events.

Event producers are the applications that send data to the Event Hubs.

Partitions are buckets for the event messages. Event Hub event messages get delivered, in order, to a partition.

https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-services/5-choose-azure-event-hubs
https://docs.microsoft.com/en-us/learn/modules/choose-a-messaging-model-in-azure-to-connect-your-services/5-choose-azure-event-hubs

Consumer groups are nothing more than a particular view of the Event Hub. It has things like the current position where

an application is. With multiple consumer groups, Event Hubs can support multiple applications reading through the

events all at their own pace.

Subscribers are the consumers or the applications that read the events contained within the Event Hub.

Workflow: Send Events to Event Hub

1. Install .NET SDK for Event Hubs: Azure.Messaging.EventHubs

2. Obtain connection info – endpoint will include key used to authorize to the Event Hub. Can be obtained from

Azure Portal > Event Hubs Namespace > Settings > Shared access policies

3. Open connection using EventHubProducerClient – good idea to cache this object

4. Prepare data – convert to binary representation – JsonSerializer.SerializeToUtf8Bytes()

5. Send data – single or batch of events – you may specify a partition

Workflow: Read Events from Event Hub

1. Install .NET SDK for Event Hubs: Azure.Messaging.EventHubs

2. Obtain connection info.

3. Open connection using EventHubConsumerClient or EventProcessorClient

4. Retrieve data

5. Decode data – deserialize from binary back to your class – JsonSerializer.Deserialize<MyClass>()

6. Finally, close the connection to the Event Hubs

5.4 Develop message-based solutions

• implement solutions that use Azure Service Bus

• implement solutions that use Azure Queue Storage queues

https://docs.microsoft.com/en-us/learn/paths/connect-your-services-together/

Messages

In general terms, a message is raw data produced by a service with the goal of being stored or processed elsewhere. This

means that the publisher of the messages has an expectation of some other system or subscriber process the message.

Because of this expectation, the subscriber needs to notify the publisher about the status of the message. The defining

characteristic of a message is that the overall integrity of the application may rely on messages being received. The

sender and receiver of a message are often coupled by a strict data contract.

https://docs.microsoft.com/en-us/learn/paths/connect-your-services-together/

Choosing a messaging technology:

1. Is the communication an event? If so, consider using Event Grid or Event Hubs.

2. Should a single message be delivered to more than one destination? If so, use a Service Bus topic. Otherwise,

use a queue.

https://docs.microsoft.com/en-us/learn/modules/implement-message-workflows-with-service-bus/2-choose-a-

messaging-platform

Events and Queues

An event triggers a notification that something has occurred. Events are "lighter" than messages and are most often

used for broadcast communications.

• The event may be sent to multiple receivers, or to none at all

• Events are often intended to have a large number of subscribers for each publisher (fan out)

• The publisher of the event has no expectation about the action a receiving component takes

Service Bus and Queue Storage are designed to handle messages. If you want to send events, you would likely choose

Event Grid or Event Hub.

A queue is a simple temporary storage location for messages. A sending component adds a message to the queue. A

destination component picks up the message at the front of the queue.

Queues decouple the source and destination components to insulate destination components from high demand.

Benefits of message queuing: encourages application logic modularity, and enables fault tolerance between modules.

Service Bus

Skill: implement solutions that use Azure Service Bus

https://docs.microsoft.com/en-us/learn/modules/implement-message-workflows-with-service-bus/

Azure Service Bus is an enterprise-level message broker that allows different applications to communicate with each

other in a reliable way. A message is raw data that an application sends asynchronously to the broker to be processed by

another application connected to the broker. The message can contain JSON, XML, or text information. Service bus

messages are ordered (FIFO).

https://docs.microsoft.com/en-us/learn/modules/implement-message-workflows-with-service-bus/2-choose-a-messaging-platform
https://docs.microsoft.com/en-us/learn/modules/implement-message-workflows-with-service-bus/2-choose-a-messaging-platform
https://docs.microsoft.com/en-us/learn/modules/implement-message-workflows-with-service-bus/

Namespace is a container for all components of the messaging. A single service bus namespace can contain multiple

queues and topics. The different components of your solution connect to the topics and queues in the namespace.

Queue is a container of messages. As a new message arrives at the queue, the Service Bus service assigns a timestamp to

the message. Queues are appropriate for point-to-point communication scenarios in which a single application needs to

communicate with another single application.

Topic Topics are similar to queues but are used in publisher/subscriber models. The difference between queues and

topics is that topics can have several applications receiving messages. When subscribed to a topic, the receiver can filter

the messages.

Filters Topic filters can be specified as:

• Boolean filters – all or none of the messages are selected

• SQL filters – SQL-like expression evaluated against message properties

• Correlation filters – matched against message properties and property values

Subscription This is basically a dedicated “queue” for a subscriber into a topic. It is ordered (FIFO).

Dead-letter Queue (DLQ) This enables you to capture messages that were not processed during their lifetime, and act

accordingly with those messages.

To code against Service Bus, use the Microsoft.Azure.ServiceBus NuGet package. Start by creating an instance of

QueueClient class both in sending and receiving components to or from the service bus.

To connect to a queue in a service bus, you need:

• The URL of the Service Bus namespace and queue or topic, also known as an endpoint.

• An access key.

Interact with Service Bus using CLI
#create a queue

az servicebus queue create --name <NAME> --namespace-name <NAME> --resource-group <RG-NAME>

#delete a queue

az servicebus queue delete --name <NAME> --namespace-name <NAME> --resource-group <RG-NAME>

#create a topic

Az servicebus topic create --name <NAME> --namespace-name <NAME> --resource-group <RG-NAME>

#delete a topic

az servicebus topic delete --name <NAME> --namespace-name <NAME>

#create a subscription

az servicebus topic subscription create --name <NAME> --namespace-name <NAME> --topic-name <NAME>

Interacting using the Azure Portal

To create a Shared Access Policy choose:

Portal > Service Bus > Namespace > Settings > Shared access policy > +Add

In Add SAS Policy sidebar, enter Policy name, tick some boxes and click the Create button.

Then you will get connection strings:

Copy the strings and use them in your code.

Interacting with .NET: To send a message to your Service Bus Queue:

using Microsoft.Azure.ServiceBus;

var myConnectionString = ConfigurationManager.Get(“MyConnection”);

var myQueueName = “MyQueue”;

queueClient = new QueueClient(myConnectionString, myQueueName);

var encodedMessage = new Message(Encoding.UTF8.GetBytes(“Hello, World!”));

await queueClient.SendAsync(encodedMessage);

await queueClient.CloseAsync();

To receive a message from your Service Bus Queue, you must first register a message handler - this is the method in

your code that will be invoked when a message is available on the queue.

queueClient.RegisterMessageHandler(MessageHandler, messageHandlerOptions);

Then, within the message handler, call the QueueClient.CompleteAsync() method to remove the message from the

queue.

public void MessageHandler()

{

await queueClient.CompleteAsync(message.SystemProperties.LockToken);

await queueClient.CloseAsync();

}

To allow multiple components to receive the same message, use an Azure Service Bus topic.

To send a message to the Service Bus Topic:

using Microsoft.Azure.ServiceBus;

topicClient = new TopicClient(myConnectionString, myTopicName);

var encodedMessage = new Message(Encoding.UTF8.GetBytes(“Hello, World!”));

await topicClient.SendAsync(encodedMessage);

To receive a message from the Service Bus Topic Subscription, create a subscription object and then register a message

handler

subscriptionClient = new SubscriptionClient(myConnectionString, myTopicName, mySubscriptionName);

subscriptionClient.RegisterMessageHandler(MessageHandler, messageHandlerOptions);

Then within the message handler, call CompleteAsync() to remove the message from the queue.

Public void MessageHandler()

{

await subscriptionClient.CompleteAsync(message.SystemProperties.LockToken);

}

Azure Queue Storage queues

Skill: implement solutions that use Azure Queue Storage queues

https://docs.microsoft.com/en-us/learn/modules/communicate-between-apps-with-azure-queue-storage/

A storage queue is a high-performance message buffer that can act as a broker between the front-end components (the

"producers") and the middle tier (the "consumer").

A queue increases resiliency by temporarily storing waiting messages. At times of high demand, the queue may increase

in size, but messages are not lost. The destination component can catch up and empty the queue as demand returns to

normal. This makes queue storage useful for critical business data that would be damaging to lose.

A message in a queue is a byte array of up to 64 KB. Message contents are not interpreted at all by any Azure

component. If you want to create a structured message, you could format the message content using XML or JSON. Your

code is responsible for generating and interpreting your custom format. Unlike Service Bus, Storage Queue messages are

not ordered.

A queue is part of a storage account. When you create a storage account that will contain queues, you should consider

the following settings:

• Queues are only available as part of Azure general-purpose storage accounts (v2). You cannot add them to Blob

storage accounts.

• You should choose a location that is close to either the source components or destination components or

(preferably) both.

• Data is always replicated to multiple servers. You have a choice of replication strategies: Locally Redundant

Storage (LRS) is low-cost but vulnerable to disasters that affect an entire data center while Geo-Redundant

Storage (GRS) replicates data to other Azure data centers.

• Require secure transfer if sensitive information may pass through the queue. This setting ensures that all

connections to the queue are encrypted using Secure Sockets Layer (SSL).

To access a queue, you need three pieces of information:

• Storage account name

• Queue name

• Authorization token

https://docs.microsoft.com/en-us/learn/modules/communicate-between-apps-with-azure-queue-storage/

This information is used by both applications that talk to the queue. The combination of your storage account name and

your queue name uniquely identifies a queue. Every request to a queue must be authorized. There are several options to

choose from: Azure AD, shared key, shared access signature (SAS).

You access a queue using a REST API. To do this, you'll use a URL that combines the name you gave the storage account

with the domain queue.core.windows.net and the path to the queue you want to work with. The Azure Storage Client

Library for .NET is a library provided by Microsoft that formulates REST requests and parses REST responses for you. The

client library uses a connection string to establish your connection. Your connection string is available in the Settings

section of your Storage Account in the Azure portal, or through the Azure CLI and PowerShell. A connection string is a

string that combines a storage account name and account key and must be known to the application to access the

storage account.

The sender creates the queue and adds a message. The receiver retrieves a message, processes it, and then deletes the

message from the queue.

Notice that get and delete are separate operations. This arrangement handles potential failures in the receiver and

implements a concept called at-least-once delivery. After the receiver gets a message, that message remains in the

queue but is invisible for 30 seconds. If the receiver crashes or experiences a power failure during processing, then it will

never delete the message from the queue. After 30 seconds, the message will reappear in the queue and another

instance of the receiver can process it to completion.

Interacting with queue storage using CLI:

#create a queue

az storage queue create --name <NAME>

#delete a queue

az storage queue delete --name <NAME>

#view message (without affecting visibility)

az storage message peek --queue-name <NAME>

#get message

az storage message get --queue-name <NAME>

#delete a message

az storage message delete --queue-name <NAME> --id <MESSAGE-ID> --pop-receipt <RECEIPT-ID>

#delete all messages

az storage message clear --queue-name <NAME>

Interacting using .NET:

.NET packages via NuGet: Azure.Storage.Queues

To connect to a queue, you first create a CloudStorageAccount with your connection string. The resulting object can

then create a CloudQueueClient, which in turn can open a CloudQueue instance.

CloudStorageAccount account = CloudStorageAccount.Parse(connectionString);

CloudQueueClient client = account.CreateCloudQueueClient();

CloudQueue queue = client.GetQueueReference("myqueue");

await queue.CreateIfNotExistsAsync();

var message = new CloudQueueMessage("your message here");

await queue.AddMessageAsync(message);

Creating a CloudQueue doesn't necessarily mean the actual storage queue exists. However, you can use this object to

create, delete, and check for an existing queue.

In the receiver, you get the next message, process it, and then delete it after processing succeeds.

CloudQueue queue;

CloudQueueMessage message = await queue.GetMessageAsync();

if (message != null)

{

 // Process the message

 await queue.DeleteMessageAsync(message);

}

Queue Storage or Service Bus?

Use Case Service Bus Queue Storage

Individual message > 64 KB ✔

Guarantee message ordering (FIFO) ✔

topics (one-to-many) ✔

Transactions ✔

Duplicate detection ✔

Receice messages without polling (AMQP 1.0) ✔

at-least-once delivery ✔* ✔

At-most-once delivery ✔**

Overall storage needs > 80 GB ✔

Service Bus Receive Modes

• *Peek Lock: at-least-once delivery – two stage receive operation

• **Receive delete: at-most-once delivery – message is immediately marked as received

Appendices

Appendix 1 – Deleted Topics (out of scope as of March 26, 2021)

A1-1.1 Implement IaaS solutions

• configure VMs for remote access

• Azure Kubernetes Services (AKS)

VMs – Remote Access Configuration

Azure VMs can have an optional public IP address assigned to them so that we can interact with the VM over the

Internet. Alternatively, we can set up a VPN that connects our on-premises network to Azure.

To connect to a Linux VM via SSH, you need:

• the public IP address of the VM

• the username of the local account on the VM

• a public key configured in that account

• access to the corresponding private key

• port 22 open on the VM

Azure Kubernetes Service (AKS)

AKS and containers provide a platform for microservice based architectures in the cloud. Kubernetes also provide

continuous integration and continuous delivery (CI/CD) services that help deploy and manage containerized

applications.

A1-2.1 Develop solutions that use Cosmos DB storage

• interact with data using the appropriate SDK

• create Cosmos DB containers

• implement scaling (partitions, containers)

• implement server-side programming including stored procedures, triggers, and change

feed notifications

Cosmos DB Scaling (Partitions/Containers)

A partitioning strategy enables you to add more partitions to your database when need them. This scaling strategy is

called scale out or horizontal scaling.

Server-Side Programming – Stored procedures, Triggers, Change Feed Notifications

Stored Procedures and User Defined Functions (UDFs)

Stored procedures are written in JavaScript and are stored in a container on Azure Cosmos DB. Stored procedures are

the only way to achieve atomic transactions within Azure Cosmos DB; the client-side SDKs do not support transactions.

UDFs can be called only from inside queries.

A1-2.2 Develop solutions that use blob storage
• implement data archiving and retention

• implement hot, cool, and archive storage

A1-3.1 Implement user authentication and authorization

• implement OAuth2 authentication

• control access to resources by using role-based access controls (RBAC)

OAuth2

Token based authentication.

For example:

The OAuth protocol defines four roles:

• Resource owner Person or entity that can grant access to the resources

• Resource server Hosts the resources that you want to share

• Client Third-party application that needs to access the resource.

• Authorization server Server that issues the access token to the client for accessing the resources.

When you are working with OAuth2 authentication, remember that you don’t need to store the username and password

information in your system. You can delegate that task in specialized authentication servers.

A1-3.2 Implement secure cloud solutions

• implement Managed Identities for Azure resources

Implement Managed Identities for Azure resources

When you are designing your application, you identify the different services or systems on which your application

depends. In all these situations, there is a common need to authenticate with the service before you can access it. The

drawback is that you need to store a security credential to be able to authenticate to the service that you want to

access. You can address most of these situations by using the Azure Key Vault, but your code still needs to authenticate

to Azure Key Vault. Fortunately, Azure AD provides Managed Identities for Azure resources that removes the need to use

credentials for authenticating your application to Azure services.

EXAM TIP: You can configure two different types of managed identities: system- and user-assigned. System-assigned

managed identities are tied to the service instance. If you delete the service instance, the system-assigned managed

identity is automatically deleted as well. You can assign the same user-assigned managed identities to several service

instances. You can also assign several user assigned identities to the same service instance (permissions are additive).

When you assign a user-assigned identity, it over-rides the system assigned identity.

A1-4.1 Integrate caching and content delivery within solutions

• develop code to implement CDNs in solutions

• Store and retrieve data in Azure Redis cache

Develop code to implement CDNs in solutions

To use Azure CDN with your solution, you need to configure a profile and create an endpoint, which can be done

through the Azure portal. This profile contains the list of endpoints in your application that would be included in the

CDN.

When you add content to a CDN cache, the system automatically assigns a Time-To-Live (TTL). If the TTL is lower than

the current time, the CDN considers the content to be fresh. If the TTL expires, the CDN marks the content as stale or

invalid. When the next user tries to access the invalid content, the CDN compares the cached file with the content in the

web server. If the files don’t match, the CDN updates it from the web server.

You can configure the default TTL associated with a site by using the Cache-Control HTTP Header. You set the value for

this header in different ways:

• Default CDN configuration – Azure CDN automatically configures a default value of seven days.

• Caching rules – Set global or custom caching rules on the CDN

• Web config files:

<configuration>

 <system.webServer>

 <staticContent>

 <clientCache cacheControlMode="UseMaxAge" cacheControlMaxAge="3.00:00:00" />

 </staticContent>

 </system.webServer>

</configuration>

• Programmatically:

// Set the caching parameters.

Response.Cache.SetExpires(DateTime.Now.AddHours(5));

Response.Cache.SetCacheability(HttpCacheability.Public);

Response.Cache.SetLastModified(DateTime.Now);

Azure Front Door (an advanced routing and caching system) allows you to cache big files and compress data on the fly.

As with Azure CDN, you can configure the cache and expiration time for the elements in the cache. The cache

configuration is performed at routing rule level.

A1-4.2 Instrument solutions to support monitoring and logging

• configure instrumentation in an app or service by using Application Insights

• implement code that handles transient faults

Handling Transient Faults

Developing an application for the cloud means your application depends on resilient cloud resources, thereby making

your application more resilient. But there can still be situations that temporarily affect your application, such as

automatic failovers or load balancing operations. These situations are referred to as transient faults. A transient fault is a

temporary one-time error that comes and goes.

Strategies to handle transient faults: retry/back-off logic; avoid tightly couples operations between apps and servers –

perhaps use queues or other messaging systems. In general, expect that API calls will not always work, and handle errors

gracefully.

Detect and classify faults Not all the faults that may happen during the application execution are transient. Your

application needs to identify whether the fault is transient, long-lasting, or a terminal failure.

Retry the operation when appropriate Once your application determines that it’s dealing with a transient fault, the

application needs to retry the operation. It also needs to keep track of the number of retries of the faulting operation.

Implement an appropriate retry strategy Indefinitely retrying the operation could lead to other problems. Your

application needs to set a retry strategy that defines the number of retries, sets the delay between each retry, and sets

the actions that your application should take after a failed attempt. Setting the correct number of retries and the delay

between them depends on factors such as the type of resources, the operating conditions, and the application itself.

Use existing built-in retry mechanism When working with SDKs for specific services, the SDK usually provides a built-in

retry mechanism. Before thinking of implementing your retry mechanism, you should review the SDK and use the built-

in retry mechanism.

Determine whether the operation is suitable for retrying When an error is raised, it usually indicates the nature of the

error. Once you determine your application is dealing with a transient fault, you need to determine whether retrying the

operation can succeed. You should implement operation retries if the following conditions are met:

• You can determine the full effect of the operation.

• You fully understand the conditions of the retry.

• You can validate these conditions.

Use the appropriate retry count and interval Setting the wrong retry count could lead your application to fail or could

lock resources that can affect the health of the application. If you set the retry count too low, your application may not

have enough time to recover and will fail. If you set the retry count too high or too short, you can lock resources, such as

threads, connections, or memory. When choosing the appropriate retry count and interval, you need to consider the

type of operation that suffered the transient fault. Common retry strategies:

Exponential back-off use a short time interval for the first retry, and then exponentially increase it for subsequent

retries. For example, you set the initial interval to 3 seconds and then 9, 27, 81 for subsequent retries.

Incremental intervals use a short time interval for the first retry, then incrementally increase it for the subsequent

retries. For example, you set the initial interval to 3 seconds and then 5, 8, 13, 21 for subsequent retries.

Regular intervals use the same time interval for each retry. This strategy is not appropriate in most cases.

Immediate retry You should not use this type of retry more than once. If the immediate retry doesn’t recover from the

transient fault, you should switch to another retry strategy.

Randomization If your application executes several retries in parallel, use random starting retry interval values with any

of the previous strategies. This allows you to minimize the probability that two different application threads start the

retry mechanism at the same time.

Avoid anti-patterns When implementing your retry mechanism, there are some patterns you should avoid:

• Avoid implementing duplicated layers of retries. If your operation is made of several requests to several

services, you should avoid implementing retries on every stage of the operation.

• Never implement endless retry mechanisms. This can cause resource exhaustion or connection throttling. You

should use the circuit breaker pattern or a finite number of retries.

• Never use immediate retry more than once.

Test the retry strategy and implementation Because of the difficulties when selecting the correct retry count and interval

values, you should thoroughly test your retry strategy and implementation. You should pay special attention to heavy

load and high concurrency scenarios. You should test this by injecting transient and non-transient faults into your

application.

Manage retry policy configuration When you are implementing your retry mechanism, you should not hardcode retry

count and interval values. Instead, you can define a retry policy that contains the retry count and interval as well as the

mechanism that determines whether a fault is transient or non-transient. You should store this retry policy in

configuration files so that you can fine-tune the policy.

Log transient and non-transient faults A single transient fault doesn’t indicate an error in your application. If the number

of transient faults is increasing, this can be an indicator of a more significant potential failure or that you should increase

the resources assigned to the faulting service. You should log transient faults as Warning messages instead of Errors.

Using the Error log level could lead to triggering false alerts in your monitoring system.

Circuit Breaker Pattern One of the big differences between in-memory calls and remote calls is that remote calls can fail,

or hang without a response until some timeout limit is reached. The basic idea behind the circuit breaker pattern is this:

wrap a protected function call in a circuit breaker object, which monitors for failures. Once the failures reach a certain

threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error or with some

alternative service or default message, without the protected call being made at all. This will make sure system is

responsive and threads are not waiting for an unresponsive call.

A1-5.1 Develop an App Service Logic App

• create a Logic App

• create a custom connector for Logic Apps

• create a custom template for Logic Apps

Logic App Definition

A Logic App is a connector service that connects Azure services to each other and to third-party services. Logic Apps

manage work flows.

Create a Logic App

Skill: create a Logic App

https://docs.microsoft.com/en-us/learn/paths/build-workflows-with-logic-apps/

Azure Logic Apps automate the execution of business processes using a graphical design tool to arrange pre-made

components into the sequence you need.

https://docs.microsoft.com/en-us/learn/paths/build-workflows-with-logic-apps/

Logic Apps Custom Connector

Skill: create a custom connector for Logic Apps

A connector is a component that provides an interface to an external service, using the external service's REST or SOAP

API. You can write custom connectors to access services that don't have pre-built connectors.

Logic Apps Custom Template

Skill: create a custom template for Logic Apps

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-create-azure-resource-manager-templates

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-azure-resource-manager-templates-overview

ARM templates can be used to create and deploy logic apps.

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-create-azure-resource-manager-templates
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-azure-resource-manager-templates-overview

Appendix 2 – Command-Line commands

Azure CLI, PowerShell, Docker, Func, …

A2-1.1 Implement IaaS solutions

Provision VMs

Skill: provision VMs

Create resource group.

#CLI create resource group example

az group create \

 --name “test-rg” \

 --location “centralus”

powershell create resource group example

New-AzResourceGroup `

 -Name "test-rg" `

 -Location "{location}"

Create vm. Open port. Get public IP. Azure CLI example:

#create vm

az vm create \

 --resource-group “test-rg” \

 --name “win2016-vm” \

 --image “win2016datacenter” \

 --admin-username “robi” \

 --admin-password “myPasswordHere”

az vm create \

 --resource-group “test-rg” \

 --name “linux-vm” \

 --image “UbuntuLTS” \

 --admin-username “robi” \

 --authentication-type “ssh” \

 --ssh-key-value ~/.ssh/id_rsa.pub

#open port

az vm open-port \

 --resource-group “test-rg” \

 --name “win2016-vm” \

 --port “3389”

az vm open-port \

 --resource-group “test-rg” \

 --name “linux-vm” \

 --port “22”

#get public ip

az vm list-ip-addresses \

 --resource-group “test-rg” \

 --name “win2016-vm”

PowerShell example:

New-AzVm `

 -ResourceGroupName "test-rg" `

 -Name "win2016-vm" `

 -Image "Win2019Datacenter" `

 -Location "East US" `

 -VirtualNetworkName "test-wp1-eus-network" `

 -SubnetName "default" `

 -SecurityGroupName "test-wp1-eus-nsg" `

 -PublicIpAddressName "test-wp1-eus-pubip" `

 -OpenPorts 80,3389

Get-AzPublicIpAddress `

 -ResourceGroupName "test-rg" `

 -Name "win2016-vm"

VMs – ARM Templates

Skill: configure, validate, and deploy ARM templates

To deploy an ARM template, use either the Azure CLI command az deployment group create or the Azure PowerShell

command New-AzResourceGroupDeployment.

CLI example

az deployment group create \

 --name blanktemplate \

 --resource-group myResourceGroup \

 --template-file "{provide-the-path-to-the-template-file}"

powershell example

New- AzResourceGroupDeployment `

 -Name {name of your resource group} `

 -Location "{location}"

Create Docker Images

Skill: configure container images for solutions

Building a Container Image

Example Dockerfile:

FROM defines a base container image used for subsequent instructions in the docker file.

RUN executes a command inside the container. In the example, it will create a directory

named app inside the container image.

WORKDIR sets the working directory for any subsequent instructions in this docker file.

COPY is used to copy application binaries into the container.

RUN executes scripts inside the container.

EXPOSE tells the container’s runtime which port the application in the container is listening

on.

ENTRYPOINT is used to define which script or binary to start when the container is started

from this container image. Inside the [] is the command to run along with its parameters.

Sometimes CMD is used instead of ENTRYPOINT.

Build container image from docker file in current directory. Name and tag the container image:

docker build -t webappimage:v1 .

To run an instance of this container image on the local host as a container:

docker run –name webapp –publish 8080:80 –detach webappimage:v1

-publish maps the local machine port 8080 to the container port 80 that the application running inside the container is

listening on.

With the container running, we can use curl to connect to the published port 8080.

curl http://localhost:8080

We can stop and remove the running webapp (the container):

docker stop webapp

docker rm webapp

Publish Image to Azure Container Registry (ACR)

Skill: publish an image to the Azure Container Registry

First, create an ACR:

ACR_NAME=’demo-acr’

az acr create \

 --resource-group ‘test-rg’ \

 --name $ACR_NAME \

 --sku Standard

To push your image to your ACR registry:

1. Log in to your Azure subscription

az login

2. Log in to your registry

az acr login –-name $ACR_NAME

3. Tag the image that you want to upload to the registry - for example webappimage:v1

docker tag webappimage:v1 $ACR_NAME.azurecr.io/webappimage:v1

4. Push the image for example webappimage:v1

docker push $ACR_NAME.azurecr.io/webappimage:v1

Alternatively, you can push the image using ACR tasks:

az acr build –image “webappimage:v1-acr-task” –registry $ACR_NAME .

Azure Container Instances – Running Containers

Skill: run containers by using Azure Container Instance

#deploy container into ACI

SERVER=$(az acr show –query loginServer)

az container create \

 --resource-group test-rg \

 --name “my-app” \

 --ports 80 \

 --image $SERVER/webappimage:v1

Once deployed, the app in the container will be running in ACI. Get the URL as follows:

URL=$(az container show --name ‘my-app’ --query ipAddress.fqdn)

echo $URL

A2-1.2 Create Azure App Service Web Apps

Create an Azure App Service Web App

Skill: create an Azure App Service Web App

From Azure CLI

You can create a web app using Azure CLI.
as group create --name my-resource-group --location westus2

az appservice plan create --name my-app-service-plan --resource-group my-resource-group \

 --sku s1 --is-linux

az webapp create --group my-resource-group --plan my-app-service-plan \

 --name my-web-app --runtime “node”

From PowerShell

You can create a web app using PowerShell.

New-AzResourceGroup -Name ‘my-rg’ -Location ‘westus’

New-AzAppServicePlan -Name ‘my-plan’ -Location ‘westus’`

 -ResourceGroupName ‘my-rg’ -Tier S1

New-AzWebApp -Name ‘my-web-app’ -Location ‘westus’ `

 -AppServicePlan ‘my-plan’ -ResourceGroupName ‘my-rg’

Deploy Code to a Web App

Skill: deploy code to a web app

From Azure CLI
az webapp up

A2-1.3 Implement Azure functions

Create and deploy Azure Function apps
Skill: create and deploy Azure Function apps

create function app

az functionapp create -g MyResourceGrp -p MyAppServicePlan -n MyFuncAppName -s MyStorageAcct

After the Function App has been created, you can publish Azure Functions to it.

To use the Func command, first install Azure func core tools:

npm i azure-functions-core-tools

Then make a directory and go there:

md azfunc

cd azfunc

Initialize the function app:

as a dotnet app

func init dotnet

or as a node app
func init node

or as a python app
func init python

Then create the function:

example: cosmos dB triggered

func new CosmosDBTrigger

A2-2.1 Develop solutions that use Cosmos DB storage
Example: create a Cosmos DB account using Azure CLI.

create a cosmos db account (defaults to sql api)

az cosmosdb create --name pluralsight --resource-group pluralsight

create a sql database

az cosmosdb sql database create --account-name pluralsight

 --name sampledb

create a sql database container

az cosmosdb sql container create --resource-group pluralsight

 --account-name pluralsight --database-name sampledb

 --name samplecontainer --partition-key-path “/employeeid”

A2-2.2 Develop solutions that use Blob storage

Move Blob storage items between storage accounts or containers

Skill: move items in Blob storage between storage accounts or containers

To copy blobs with the Azure CLI, use the az storage blob copy command.

#copy a single blob

az storage blob copy start

 --source-account-name acct1

 --source-account-key 00000000

 --source-container images

 --source-blob pic.jpg

 --account-name acct2

 --account-key 00000000

 --destination-container pics

 --destination-blob pic.jpg

#copy container with all its blobs

az storage blob copy start-batch

 --source-account-name acct1

 --source-account-key 00000000

 --source-container images

 --account-name acct2

 --account-key 00000000

 --destination-container pictures

The AzCopy command line utility has a copy command.

General form:

azcopy copy "<source-path>" "<target-path>" [--recursive=true]

Examples:

upload local folder

azcopy copy "C:\Documents" "https://mystorageurl.com/mycontainer?[SAS]" –recursive=true

copy single blob between storage accounts

azcopy copy "https://url1.com/mycontainer/myfile.txt?[SAS]" "https://url2.com/mycontainer/myfile.txt?[SAS]"

copy all blobs from one container to another

azcopy copy "https://url1.com/mycontainer1?[SAS]" "https://url2.com/mycontainer2?[SAS]" –recursive=true

#copy all containers from one storage account to another

azcopy copy "https://url1.com?[SAS]" "https://url2.com?[SAS]" –recursive=true

You can change the blob storage tier from Azure CLI:

az storage blob set-tier

 --account-key 12345

 --account-name myacct

 --container mycontainer

 --name mypic.jpg

 --tier Cool

A2-3.2 Implement secure cloud solutions

Secure App Configuration Data

Skill: secure app configuration data by using the App Configuration and Azure Key Vault

Creating a Key Vault:

CLI

az keyvault create --resource-group ‘rg-101’ […optional parameters…]

PowerShell

New-AzKeyVault -VaultName ‘MyVault’ -ResourceGroupName ‘rg-101’ -Location ‘East US’

Manage keys, secrets, and certificates by using the Key Vault API

Skill: develop code that uses keys, secrets, and certificates stored in Azure Key Vault

az keyvault create \

 --resource-group learn-950b3a03-fe30-4c1f-815d-d259db8eff26 \

 --location centralus \

 --name ridvaultname

az keyvault secret set \

 --name SecretPassword \

 --value reindeer_flotilla \

 --vault-name ridvaultname

A2-4.1 Integrate caching and content delivery within solutions
Skill: configure cache and expiration policies for Azure Redis Cache

az redis create \

 --name "MY_NAME" \

 --resource-group "MY_RG" \

 --location eastus \

 --vm-size C0 \

 --sku Basic

A2-4.2 Instrument solutions to support monitoring and logging
Skill: configure an app or service to use Application Insights

Configure web server logging to the file system (Windows or Linux)

az webapp log config \

 --name myApp \

 --resource-group myRG \

 --web-server-logging filesystem

Configure app logging to Azure Blob Storage (Windows only)

az webapp log config \

 --name myApp \

 --resource-group myRG \

 --application-logging azureblobstorage

Configure container logging to the file system (Linux only)

az webapp log config \

 --name myApp \

 --resource-group myRG \

 --docker-container-logging filesystem

A2-5.2 Implement API Management

Create an APIM instance

Skill: create an APIM instance

CLI

az apim create --name myapim --resource-group myResourceGroup \

 --publisher-name Contoso --publisher-email admin@contoso.com \

 --no-wait

PowerShell

New-AzApiManagement -Name "myapim" -ResourceGroupName "myResourceGroup" `

 -Location "West US" -Organization "Contoso" -AdminEmail admin@contoso.com

A2-5.3 Develop event-based solutions

Event Grid

Skill: implement solutions that use Azure Event Grid

Instead of creating a service, Event grid is enabled at the subscription level, by registering a resource provider. This way

other services can send events to it:

az provider register --namespace Microsoft.EventGrid

az provider show --namespace MicrosoftEventGrid --query “registrationState”

Event Hub

Skill: implement solutions that use Azure Event Hub

You need to create an Event Hub namespace before creating the Event Hub:

az eventhubs namespace create --name <NAME> /

 --resource-group <NAME> /

 --location <LOCATION> /

 --sku <Basic|Standard>

Once the namespace is created, you can create the Event Hub:

az eventhubs eventhub create --name <NAME> /

 --namespace <NAME> /

 --message-retention 3 /

 -–partition-count 4 /

 -g <GROUP NAME>

Import OpenAPI definitions

Skill: import OpenAPI definitions

Import the OpenAPI via PowerShell:

$ApiMgmtContext = New-AzApiManagementContext -ResourceGroupName "my-rg" -ServiceName "my-apim"

Import-AzApiManagementApi -Context $ApiMgmtContext -SpecificationFormat "OpenApi" -SpecificationPath

"C:\Users\XXXXXX\Downloads\myAPI-0.1-swagger.yaml" -Path "myapi"

mailto:admin@contoso.com

A2-5.4 Develop message-based solutions

Service Bus

Skill: implement solutions that use Azure Service Bus

Interact with Service Bus using CLI:

#create a queue

az servicebus queue create --name <NAME> --namespace-name <NAME> --resource-group <RG-NAME>

#delete a queue

az servicebus queue delete --name <NAME> --namespace-name <NAME> --resource-group <RG-NAME>

#create a topic

Az servicebus topic create --name <NAME> --namespace-name <NAME> --resource-group <RG-NAME>

#delete a topic

az servicebus topic delete --name <NAME> --namespace-name <NAME>

#create a subscription

az servicebus topic subscription create --name <NAME> --namespace-name <NAME> --topic-name <NAME>

Azure Queue Storage queues

Skill: implement solutions that use Azure Queue Storage queues

Interacting with queue storage using CLI:

#create a queue

az storage queue create --name <NAME>

#delete a queue

az storage queue delete --name <NAME>

#view message (without affecting visibility)

az storage message peek --queue-name <NAME>

#get message

az storage message get --queue-name <NAME>

#delete a message

az storage message delete --queue-name <NAME> --id <MESSAGE-ID> --pop-receipt <RECEIPT-ID>

#delete all messages

az storage message clear --queue-name <NAME>

With PowerShell:

New-AzResourceGroup -ResourceGroupName <RG-NAME>

New-AzStorageAccount -Name <NAME> -ResourceGroupName <RG-NAME>

$MyKey = Get-AzStorageAccountKey -AccountName <NAME>

New-AzStorageQueue -Name <Q-NAME> -StorageAccountName <NAME> -StorageAccountKey $MyKey

Get-AzStorageQueue -StorageAccountName <NAME> -StorageAccountKey $MyKey | Select Name

A2-Miscellaneous – Managing Azure AD Tenants

http://vcloud-lab.com/entries/microsoft-azure/how-to-switch-to-other-azure-ad-tenant-using-powershell-and-azure-cli

http://vcloud-lab.com/entries/microsoft-azure/how-to-switch-to-other-azure-ad-tenant-using-powershell-and-azure-cli

Between Azure CLI and PowerShell, you can manage the currently active tenant.

Get all tenants associated with the currently logged in user.

Get-AzTenant

Get currently active tenant

az account show

login to a different tenant – note: tenant must be linked to a subscription

az logout

az login –-tenant dtekorg.onmicrosoft.com

Appendix 3 – ARM templates (Infrastructure as Code)

https://docs.microsoft.com/en-gb/learn/paths/az-204-implement-iaas-solutions/

https://docs.microsoft.com/en-us/learn/paths/deploy-manage-resource-manager-templates/

https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/

https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/2-explore-

template-structure

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-user-defined-functions

A3-1 ARM Template File Structure

schema required the location of the JSON schema file that describes the structure of JSON
data

contentVersion required the version of your template – to document significant changes and to
ensure you're deploying the right template

resources required the actual items you want to deploy or update in a resource group or a
subscription

apiProfile opt. defines a collection of API versions for resource types

parameters opt. define values that are provided during deployment – can be provided by
a parameter file, command-line parameters, or in Azure portal

variables opt. define values that are used to simplify template language expressions

functions opt. user-defined functions that are available within the template – simplify
your template when complicated expressions are used repeatedly

output opt. the values that will be returned at the end of the deployment

In its simplest structure, a template has the following elements:

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",

 "contentVersion": "",

 "apiProfile": "",

 "parameters": { },

 "variables": { },

 "functions": [],

 "resources": [],

 "outputs": { }

}

Example:

https://docs.microsoft.com/en-gb/learn/paths/az-204-implement-iaas-solutions/
https://docs.microsoft.com/en-us/learn/paths/deploy-manage-resource-manager-templates/
https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/
https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/2-explore-template-structure
https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/2-explore-template-structure
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-user-defined-functions

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.1",

 "apiProfile": "",

 "parameters": {},

 "variables": {},

 "functions": [],

 "resources": [

 {

 "type": "Microsoft.Storage/storageAccounts",

 "apiVersion": "2019-06-01",

 "name": "learntemplatestorage123",

 "location": "westus",

 "sku": {

 "name": "Standard_LRS"

 },

 "kind": "StorageV2",

 "properties": {

 "supportsHttpsTrafficOnly": true

 }

 }

],

 "outputs": {}

}

A3-2 ARM Template Parameters
ARM template parameters section has the following properties:

"parameters": {

 "<parameter-name>" : {

 "type" : "<type-of-parameter-value>",

 "defaultValue": "<default-value-of-parameter>",

 "allowedValues": ["<array-of-allowed-values>"],

 "minValue": <minimum-value-for-int>,

 "maxValue": <maximum-value-for-int>,

 "minLength": <minimum-length-for-string-or-array>,

 "maxLength": <maximum-length-for-string-or-array-parameters>,

 "metadata": {

 "description": "<description-of-the parameter>"

 }

 }

}

allowed parameters types:

• string

• secureString

• integers

• boolean

• object

• secureObject

• array

Example parameter section:

"parameters": {

 "storageAccountType": {

 "type": "string",

 "defaultValue": "Standard_GRS",

 "metadata": {

 "description": "The type of the new storage account created to store the VM disks."

 }

 }

}

Example parameter usage:

"resources": [

 {

 "type": "Microsoft.Storage/storageAccounts",

 "apiVersion": "2019-04-01",

 "name": "learntemplatestorage123",

 "location": "{Location}",

 "sku": {

 "name": "[parameters('storageAccountType')]"

 },

 "kind": "StorageV2",

 "properties": {

 "supportsHttpsTrafficOnly": true

 }

 }

]

 }

Example call with a parameter:

az deployment group create \

 testdeployment1 \

 --group my-rg \

 --template-file $templateFile \

 --parameters storageAccountType=Standard_LRS

A3-3 ARM Template Outputs
ARM template outputs section specifies values that will be returned after a successful deployment.

"outputs": {

 "<output-name>": {

 "condition": "<boolean-value-whether-to-output-value>",

 "type": "<type-of-output-value>",

 "value": "<output-value-expression>",

 "copy": {

 "count": <number-of-iterations>,

 "input": <values-for-the-variable>

 }

 }

}

Example output section:

"outputs": {

 "storageEndpoint": {

 "type": "object",

 "value": "[reference('learntemplatestorage123').primaryEndpoints]"

 }

 }

A3-4 ARM Template Functions
ARM template functions allow you to construct values you need dynamically. They appear in expressions. Expressions

are values that are evaluated when the template is deployed. Expressions start and end with brackets, [and], and can

return a string, integer, Boolean, array, or object.

Example ARM template function:

"parameters": {

 "location": {

 "type": "string",

 "defaultValue": "[resourceGroup().location]"

 }

},

There are many kinds of ARM template functions:

• Array functions for working with arrays. For example, first and last.

• Comparison functions for making comparisons in your templates. For example, equals and greater.

• Date functions for working with dates. For example, utcNow and dateTimeAdd.

• Deployment value functions for values related to the deployment. For example, environment and parameters.

• Logical functions for working with logical conditions. For example, if and not.

• Numeric functions for working with integers. For example, max and mod.

• Object functions for working with objects. For example, contains and length.

• Resource functions for getting resource values. For example, resourceGroup and subscription.

• String functions for working with strings. For example, length and startsWith.

A3-5 ARM Template Variables
An ARM template variable is used when a value needs to be specified in several places in a template. Wherever the

variable is used in the template, Resource Manager replaces it with the resolved value. Using ARM template variables,

maintenance of expressions is in one place, and the template is more readable. ARM template variables are defined in

the variables: {} section of a template.

Example ARM template variable definition:

"variables": {

 "storageName": "[concat(parameters('storageNamePrefix'), uniqueString(resourceGroup().id))]"

},

Example ARM template variable usage:

"resources": [

 {

 "type": "Microsoft.Storage/storageAccounts",

 "name": "[variables('storageName')]",

 }

]

A3-6 Resource Tags
When deploying resources with an ARM template, you can use resource tags to add values that help you identify the

resource’s use. The tag values will be displayed on the overview page for the Azure resource and in cost reports.

Resource tags appear in the resource section of the ARM template. For example:

"resources": [{

 "name": "[variables('uniqueStorageName')]",

 "type": "Microsoft.Storage/storageAccounts",

 "apiVersion": "2019-06-01",

 "tags": {

 "value": {

 "Environment": "Dev",

 "Project": "Learn"

 }

 }

 },

 }],

A3-7 ARM Template Parameter Files
ARM template parameter files are JSON files that hold parameter values. For example:

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "storagePrefix": {

 "value": "storage"

 },

 "storageSKU": {

 "value": "Standard_LRS"

 },

 "resourceTags": {

 "value": {

 "Environment": "Dev",

 "Project": "Learn"

 }

 }

 }

 }

A3-8 ARM Template Deployment
To deploy an ARM template, use either the Azure CLI command az deployment group create or the Azure PowerShell

command New-AzResourceGroupDeployment. To use a parameter file, you specify the path to the parameter file in the

deployment command.

CLI example

az deployment group create \

 --name blanktemplate \

 --resource-group myResourceGroup \

 --template-file "{provide-the-path-to-the-template-file}", \

 --parameters "{path-to-the-template-file}"

powershell example

New-AzResourceGroupDeployment `

 -Name blanktemplate `

 -ResourceGroupName myResourceGroup `

 -TemplateFile "{provide-the-path-to-the-template-file}" ‘

 -TemplateParameterFile "{path-to-the-template-file}"

A3-9 ARM Management Policies
ARM management policies are useful for controlling ARM deployment. They are used to restrict the creation and

management of Azure resources. For example

{

 “if”: {

 “not”: {

 “field”: “tags”,

 “containsKey”: “ProjectID”

 }

 },

 “then”: {

 “effect”: “deny”

 }

},

{

 “if”: {

 “not”: {

 “field”: “location”,

 “in”: [“CanadaEast”, “CanadaCentral”]

 }

 },

 “then”: {

 “effect”: “deny”

 }

}

ARM management policies can be deployed:

• REST API

o HTTPS PUT commands

• Azure PowerShell

o New-AzureRmPolicyDefinition

o New-AzureRmPolicyAssignment

o Remove-AzureRmPolicyAssignment

• Azure CLI

o az policy definition create

o az policy assignment create

o az policy assignment delete

The steps are similar to working with RBAC role assignments. You create a policy definition, and then assign it to a scope.

Appendix 4 – Policies

Policies are collections of statements that serve to configure and change the behavior of the various Azure services.

A4-2.2 Develop solutions that use blob storage

 storage policies (45)

 stored access policies (46)

 Blob Storage Lifecycle Management Polices (46-47)

 Storage access policies (48)

A4-3.2 Implement secure cloud solutions

 access policies (58)

A4-4.1 Cache and Expiration Policies, Cache and Expiration Policies for Azure Redis Cache

configure cache and expiration policies

Caching policies are special rules that you can set up, either from the Azure Portal, or the SDK, to control how TTL values

are assigned. You can create global rules for all objects within the cache, or you can use custom rules for different file

types or paths within your app. It’s even possible to exclude certain areas within your app so the data there isn’t cached

at all. The web server can be configured to send a cache control header as part of the HTTP response.

 configure cache and expiration policies for Azure Redis Cache

Redis cache expiration policy

By default, a key-value pair in Redis cache won’t expire. Redis console commands to implement and manage data

expiration:

• EXPIRE sets the timeout of a key (TTL)

• TTL returns the remaining time a key has to live

• PERSIST makes a key never expire

Alternatively, using the C# ServiceStack.Redis package:

 redisClient.Expire(key, 3600); // Note: same effect as EXPIRE command from console

Redis cache eviction policies

Redis Cache eviction policies (aka maxmemory policy) indicate how data should be handled when you run out of

memory:

volatile-LRU
(default)

evict the least recently used (LRU) keys first, but only among keys that have an
expire set

volatile-TTL evict keys with a shorter TTL first, but only among keys that have an expire set

volatile-random evict keys randomly, but only among keys that have an expire set

allkeys-LRU evict keys by trying to remove the least recently used (LRU) keys first

allkeys-random evict keys randomly

noeviction return errors when the memory limit was reached

A4-5.2 Implement API Management

define policies for APIs

APIM Policies are a capability of Azure API Management that allow changing the behavior of the API through

configuration.

Polices are defined using XML format.

<policies>

 <inbound>

 <!-- statements to be applied to the request go here -->

 </inbound>

 <backend>

 <!-- statements to be applied before the request is forwarded to

 the backend service go here -->

 </backend>

 <outbound>

 <!-- statements to be applied to the response go here -->

 </outbound>

 <on-error>

 <!-- statements to be applied if there is an error condition go here -->

 </on-error>

</policies>

A4-5.4 Develop message-based solutions

 Create a shared access policy

Appendix 5 – Pricing Tiers (sku)

https://docs.microsoft.com/en-us/learn/modules/configure-app-service-plans/3-determine-plan-pricing

A5-1.2 Create Azure App Service Web Apps
Pricing tiers: Free (F), Shared (D), Basic (B), Standard (S), Premium (P), Isolated (I).

• Shared compute: Free (F) and Shared (D), the two base tiers, runs an app on the same Azure VM as apps of

other customers. These tiers allocate CPU quotas to each app that runs on the shared resources, and the

resources cannot scale out.

• Dedicated compute: The Basic (B), Standard (S), Premium (P) tiers run apps on dedicated Azure VMs. The

higher the tier, the more VM instances are available to you for scale-out. SSL certificates, “Always On”, and

manual scaling are only supported on Basic (B) tier or higher. Autoscaling and Deployment Slots are only

supported on Standard (S) tier or higher. Standard (S) tier or higher is recommended for production workloads.

• Isolated (I): This tier runs dedicated Azure VMs on dedicated Azure Virtual Networks. It provides network

isolation on top of compute isolation to your apps. It provides the maximum scale-out capabilities. Isolated (I)

tier is needed for App Service Environment (ASE) (fully isolated and dedicated environment for securely running

App Service apps at high scale)

Examples: F1 is free tier; D2 is shared tier; B1 is basic tier.

A5-1.3 Implement Azure Functions

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

Plan Benefits

Consumption plan Scale automatically and only pay for compute resources when your

functions are running. Instances of the Functions host are dynamically

added and removed based on the number of incoming events.

- Default hosting plan.

- Pay only when your functions are running.

- Scales automatically, even during periods of high load.

Premium plan Automatically scales based on demand using pre-warmed workers

which run applications with no delay after being idle, runs on more

powerful instances, and connects to virtual networks.

Dedicated plan Run your functions within an App Service plan at regular App Service

https://docs.microsoft.com/en-us/learn/modules/configure-app-service-plans/3-determine-plan-pricing
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

Plan Benefits

plan rates.

A5-2.2 Develop solutions that use blob storage
There are three kinds of standard performance storage accounts:

Omitting the legacy storage account kinds, we have the following standard and premium storage account kinds:

A5-3.2 Implement secure cloud solutions
Key Vault is available under two different sku’s, Standard and Premium. You can store Key Vault information in software

or hardware security module (HSM), but HSM requires the Premium sku.

A5-4.1 Cache and Expiration Policies, Cache and Expiration Policies for Azure Redis Cache
Pricing tiers: Basic, Standard, Premium. Also, Enterprise and Enterprise Flash. You can control the amount of cache

memory available on each tier by choosing a cache level (vm-size) from C0-C6 for Basic/Standard and P0-P4 for

Premium. Microsoft recommends you always use Standard or Premium Tier for production systems. Also, use at least a

C1 cache. C0 caches are meant for simple dev/test scenarios. Premium also allows you to:

• configure data persistence for disaster recovery

• deploy Redis cache to a virtual network for security

• use up to 53 GB of memory in a single instance

• implement clustering to automatically split your dataset among multiple nodes (aka. shards) – Redis Cluster

supports up to 10 shards to create 530 GB of memory

A5-5.2 Implement API management
APIM tiers: Developer, Basic, Standard, Premium, Isolated, Consumption.

Developer tier has no SLA. Standard adds Azure AD integration. Premium adds multi-region deployments. Isolated adds

complete compute isolation. Consumption tier runs on shared hardware, is serverless (billed per call rather than per

hour), scales automatically to meet demand – calls to the consumption tier require a short warm up time, so they are a

bit slower to start.

A5-5.4 Develop Message Based Solutions
Service Bus tiers: chosen at the namespace level: Basic, Standard, Premium. Basic does not include queues. Standard has

a max 256 KB message size. Premium has a max 1 MB message size.

Appendix 6 – Code and C# Classes

A6-1.1 Implement IaaS Solutions

Creating a VM:

static void Main(string[] args)

{

var azure = Azure

.Configure()

.Authenticate(<credentials>)

.WithDefaultSubscription();

var rg = azure.ResourceGroups

.Define(rgName)

.Create();

var vnet = azure.Networks

.Define(vNetName)

.WithExistingResourceGroup(rg)

.Create();

var nic = azure.NetworkInterfaces

.Define(nicName)

.WithExistingResourceGroup(rg)

.WithExistingPrimaryNetwork(vnet)

.Create();

var vm = azure.VirtualMachines

.Define(vmName)

.WithExistingResourceGroup(rg)

.WithExistingPrimaryNetworkInterface(nic)

.WithLatestWindowsImage("2012-R2-Datacenter")

.WithSize(Standard)

.Create();

}

A6-1.2 Create Azure App Service Web Apps

A6-1.3 Implement Azure Functions

configure input and output bindings using parameter decorators:

public static class BlobTriggerCSharp

{

[FunctionName("BlobTriggerCSharp")]

public static Task Run(

[EventGridTrigger]EventGridEvent ev,

[Blob("{data.url}", FileAccess.Read)] Stream myBlob, // in implied

[CosmosDB(databaseName: "GIS")] out dynamic doc,

[SignalR(HubName = "myhub")]IAsyncCollector<MyClass> sigR // in implied

)

{

doc = new { Description = ev.Topic, id = Guid.NewGuid() };

return sigR.AddAsync(new SignalRMessage{Target="newMessage”});

 }

}

A6-2.1 Cosmos DB Storage

Cosmos DB DocumentDB API examples. Old way:

using Microsoft.Azure.Documents.Client;

DocumentClient dc = new DocumentClient(uri, key);

var result = dc.CreateDocumentCollectionUri(uri, partitionkeyValue)

.GetAwaiter()

.GetResult();

var query = dc.CreateDocumentQuery<MyModel>(uri, myOptions)

 .Where(e => e.LastName == "Jack”);

foreach (var emp in query)

{

 Console.WriteLine(emp);

}

Version 3 of .NET SDK, add Microsoft.Azure.Cosmos package from command line:

dotnet add package Microsoft.Azure.Cosmos

Then using C# you can do this:

CosmosClient client = new CosmosClient(endpoint, key);

// An object containing relevant information about the response

DatabaseResponse databaseResponse = await client.CreateDatabaseIfNotExistsAsync(databaseId, 10000);

// A client side reference object that allows additional operations like ReadAsync

Database database = databaseResponse;

DatabaseResponse readResponse = await database.ReadAsync();

// Set throughput to the minimum value of 400 RU/s

ContainerResponse simpleContainer = await database.CreateContainerIfNotExistsAsync(

 id: containerId,

 partitionKeyPath: partitionKey,

 throughput: 400);

Container container = database.GetContainer(containerId);

ContainerProperties containerProperties = await container.ReadContainerAsync();

ItemResponse<SalesOrder> response = await container.CreateItemAsync(salesOrder, new

PartitionKey(salesOrder.AccountNumber));

string id = "[id]";

string accountNumber = "[partition-key]";

ItemResponse<SalesOrder> response = await container.ReadItemAsync(id, new PartitionKey(accountNumber));

// Create a query for items under a container using a parameterized SQL statement. It returns a FeedIterator.

QueryDefinition query = new QueryDefinition(

 "select * from sales s where s.AccountNumber = @AccountInput ")

 .WithParameter("@AccountInput", "Account1");

FeedIterator<SalesOrder> resultSet = container.GetItemQueryIterator<SalesOrder>(

 query,

 requestOptions: new QueryRequestOptions()

 {

 PartitionKey = new PartitionKey("Account1"),

 MaxItemCount = 1

 });

// Clean up.

await database.GetContainer(containerId).DeleteContainerAsync();

await database.DeleteAsync();

A6-2.2 Blob Storage

https://docs.microsoft.com/en-gb/learn/modules/work-azure-blob-storage/4-manage-container-properties-metadata-

dotnet

First add Azure.Storage.Blobs package to your project.

dotnet add package Azure.Storage.Blobs

create a new container and get a list of some system properties

//Create a CloudBlobClient for working with the Storage Account

CloudBlobClient blobClient = Common

.CreateBlobClientStorageFromSAS(appSettings.SASToken, appSettings.AccountName);

//Get a container reference for the new container.

CloudBlobContainer container = blobClient

.GetContainerReference(appSettings.ContainerName);

https://docs.microsoft.com/en-gb/learn/modules/work-azure-blob-storage/4-manage-container-properties-metadata-dotnet
https://docs.microsoft.com/en-gb/learn/modules/work-azure-blob-storage/4-manage-container-properties-metadata-dotnet

//Create the container if not already exists

container.CreateIfNotExists();

//You need to fetch the container properties before getting their values

container.FetchAttributes();

Console.WriteLine($"{container.StorageUri.PrimaryUri.ToString()}");

Console.WriteLine($"{container.Properties.ETag}");

Console.WriteLine($"{container.Properties.LastModified.ToString()}");

Console.WriteLine($"{container.Properties.LeaseStatus.ToString()}");

set and retrieve properties and metadata

using Azure.Storage.Blobs;

using Azure.Storage.Blobs.Models;

BlobServiceClient blobServiceClient = new BlobServiceClient(_connectionString);

BlobContainerClient blobContainerClient = blobServiceClient

.GetBlobContainerClient(_blobContainerName);

BlobClient blobClient = blobContainerClient

.GetBlobClient(_blobName);

BlobProperties blobProperties = await blobClient.GetPropertiesAsync();

await blobClient.SetHttpHeadersAsync(blobHttpHeaders);

await blobClient.SetMetadataAsync(metadata);

A6-3.1 Authentication and Authorization

https://docs.microsoft.com/en-us/azure/active-directory/develop/tutorial-v2-asp-webapp

Authentication with OpenID Connect

using Microsoft.Owin.Security;

using Microsoft.Owin.Security.Cookies;

using Microsoft.Owin.Security.OpenIdConnect;

/// <summary>

/// Send an OpenID Connect sign-in request.

/// Alternatively, you can just decorate the SignIn method with the [Authorize] attribute

/// </summary>

public void SignIn()

{

 if (!Request.IsAuthenticated)

 {

 HttpContext.GetOwinContext().Authentication.Challenge(

 new AuthenticationProperties{ RedirectUri = "/" },

 OpenIdConnectAuthenticationDefaults.AuthenticationType);

 }

}

/// <summary>

/// Send an OpenID Connect sign-out request.

/// </summary>

public void SignOut()

{

 HttpContext.GetOwinContext().Authentication.SignOut(

 OpenIdConnectAuthenticationDefaults.AuthenticationType,

 CookieAuthenticationDefaults.AuthenticationType);

}

https://docs.microsoft.com/en-us/azure/active-directory/develop/tutorial-v2-asp-webapp

A6-3.2 Secure Cloud Solutions
First add the package Microsoft.Azure.KeyVault

dotnet add package Microsoft.Azure.KeyVault

Use the .NET Key Vault API

// uses service principal credentials to get tokens

var tokenCB = new AzureServiceTokenProvider()

.KeyVaultTokenCallback;

var authCB = new KeyVaultClient

.AuthenticationCallback(tokenCB);

// get authenticated key vault client

var client = new KeyVaultClient(authCB);

// get value of secret

var secret = await client.GetSecretAsync($”{baseURL}/{objectType}/{secretName}/{version}”);

console.log($”{secret.value}”;

// create new secret

secretName = “NewSecret”;

await client.SetSecretAsync(baseURL, secretName, “This is a secret value.”);

// delete a secret

await client.DeleteSecretAsync(baseURL, secretName);

A6-4.1 Caching and Content Delivery
Azure CDN caching example

public class HomeController: Controller

{

 public ActionResult Index()

 {

 Response.Cache.SetExpires(DateTime.Now.AddHours(1));

 Response.Cache.SetCacheability(Public);

 Response.Cache.SetLastModified(DateTime.Now);

 Return View();

 }

}

 redis cache expiration policy example using the C# ServiceStack.Redis package

public static void SetGroupChatName(string groupChatID, string chatName)

{

 using (RedisClient redisClient = new RedisClient(redisConnectionString))

 {

 //Create a key for group chat display names

 string key = groupChatID + "displayName";

 //Set the group chat display name

 redisClient.SetValue(key, chatName);

 //Set the expiration for one hour

 redisClient.Expire(key, 3600); // Note: same effect as EXPIRE command from console

 }

}

A6-4.2 Instrument Monitoring and Logging

Application Insights has an Instrumentation Key property that we use to connect from our SDK code. From ASP.NET

Core, add NuGet package Microsoft.ApplicationInsights.AspNetCore . Then in the .NET Core Startup class, in the

ConfigureServices() method, we add Application Insights telemetry using the AddApplicationInsightsTelemetry() method

public class startup

{

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddApplicationInsightsTelemetry();

 }

}

This one line of code enables collecting telemetry data.

A6-5.1 Out of scope

A6-5.2 API Management

A6-5.3 Event-based Solutions

Publish to Event Grid topic

using Microsoft.Azure.EventGrid;

using Microsoft.Azure.EventGrid.Models;

using Microsoft.Extensions.Configuration;

using System.Collections.Generic;

string topicHostname = new Uri(configuration["EventGridTopicEndpoint"]).Host;

EventGridClient client = new EventGridClient(

 new TopicCredentials(configuration["EventGridAccessKey"]));

List<EventGridEvent> events = new List<EventGridEvent>();

events.Add(new EventGridEvent()

{

Id = Guid.NewGuid().ToString(),

EventType = "MyCompany.Items.NewItemCreated",

Data = new NewItemCreatedEvent() { itemName = "Item 1" },

EventTime = DateTime.Now,

});

client.PublishEventsAsync(topicHostname, events).GetAwaiter().GetResult();

To send and receive events from Event Hub, install Azure.Messaging.EventHubs and

Azure.Messaging.EventHubs.Processor. Use EventHubProducerClient to send, and EventHubConsumerClient to receive.

example Event Hub send:

using System;

using System.Text;

using System.Threading.Tasks;

using Azure.Messaging.EventHubs;

using Azure.Messaging.EventHubs.Producer;

static async Task Main()

 {

 // Create a client that you can use to send events to an event hub

 await using (var client = new EventHubProducerClient(conecstr, hubname))

 {

 // Create a batch of events

 using EventDataBatch eventBatch = await client.CreateBatchAsync();

 // Add events to the batch.

 eventBatch.TryAdd(new EventData(Encoding.UTF8.GetBytes("First event")));

 eventBatch.TryAdd(new EventData(Encoding.UTF8.GetBytes("Second event")));

 eventBatch.TryAdd(new EventData(Encoding.UTF8.GetBytes("Third event")));

 // Use the producer client to send the batch of events to the event hub

 await client.SendAsync(eventBatch);

 }

 }

example Event Hub receive:

using Azure.Messaging.EventHubs;

using Azure.Messaging.EventHubs.Consumer;

using Azure.Messaging.EventHubs.Processor;

static async Task Main()

{

 // Create an event processor client to process events in the event hub

 EventProcessorClient processor = new EventProcessorClient(

storageClient,

consumerGroup,

ehubNamespaceConnectionString,

eventHubName);

 // Register handlers for processing events and handling errors

 processor.ProcessEventAsync += ProcessEventHandler;

 processor.ProcessErrorAsync += ProcessErrorHandler;

 // Start the processing

 await processor.StartProcessingAsync();

 // Wait for 30 seconds for the events to be processed

 await Task.Delay(TimeSpan.FromSeconds(30));

 // Stop the processing

 await processor.StopProcessingAsync();

}

static async Task ProcessEventHandler(ProcessEventArgs eventArgs)

{

 // Write the body of the event to the console window

 Console.WriteLine($"{Encoding.UTF8.GetString(eventArgs.Data.Body.ToArray())}");

 // Update checkpoint so that we only receive new events next time

 await eventArgs.UpdateCheckpointAsync(eventArgs.CancellationToken);

}

static Task ProcessErrorHandler(ProcessErrorEventArgs eventArgs)

{

 // Write details about the error to the console window

 Console.WriteLine(eventArgs.Exception.Message);

 return Task.CompletedTask;

}

A6-5.4 Message-based Solutions

send message to Service Bus queue

using Microsoft.Azure.ServiceBus;

var myConnectionString = ConfigurationManager.Get(“MyConnection”);

var myQueueName = “MyQueue”;

queueClient = new QueueClient(myConnectionString, myQueueName);

var encodedMessage = new Message(Encoding.UTF8.GetBytes(“Hello, World!”));

await queueClient.SendAsync(encodedMessage);

await queueClient.CloseAsync();

receive a message from Service Bus queue

queueClient.RegisterMessageHandler(MessageHandler, messageHandlerOptions);

public void MessageHandler()

{

await queueClient.CompleteAsync(message.SystemProperties.LockToken);

await queueClient.CloseAsync();

}

To interact with Azure Storage queues, add package Azure.Storage.Queues

send a message to Azure Storage Queue

CloudStorageAccount account = CloudStorageAccount.Parse(connectionString);

CloudQueueClient client = account.CreateCloudQueueClient();

CloudQueue queue = client.GetQueueReference("myqueue");

await queue.CreateIfNotExistsAsync();

var message = new CloudQueueMessage("your message here");

await queue.AddMessageAsync(message);

receive a message from Azure Storage Queue

CloudQueue queue;

CloudQueueMessage message = await queue.GetMessageAsync();

if (message != null)

{

 // Process the message

 await queue.DeleteMessageAsync(message);

}

 Appendix 7 – Authentication

Azure AD B2C

https://docs.microsoft.com/en-us/azure/active-directory-b2c/

https://docs.microsoft.com/en-gb/azure/active-directory-b2c/overview

https://docs.microsoft.com/en-us/azure/active-directory-b2c/technical-overview

https://docs.microsoft.com/en-gb/azure/active-directory-b2c/configure-authentication-sample-web-app

https://docs.microsoft.com/en-gb/azure/active-directory-b2c/add-sign-up-and-sign-in-policy

https://docs.microsoft.com/en-us/learn/modules/enable-external-access-with-b2c/

https://www.youtube.com/watch?v=RNfJW8Fv10U/

https://docs.microsoft.com/en-gb/azure/active-directory-b2c/enable-authentication-web-application

https://docs.microsoft.com/en-us/learn/paths/m365-identity-associate/

https://docs.microsoft.com/en-us/learn/modules/identity-secure-custom-api/

User flows are pre-defined and easily configurable policies. They define the steps of the user experience as well as the

interactions between Azure AD B2C and various components. Your application can call one or more policies depending

on whether the user would like to sign-up, sign-in, reset their password or do something else. An application registered

with an Azure AD B2C tenant triggers a user flow by using a standard open ID connect (OIDC) authentication request

that includes a policy parameter in the URL. The policy engine (PE) looks at the policy to determine what steps need to

be executed and in what order. B2C has a core store to store user objects. The B2C authentication services component

uses the core store to validate credentials.

To add Microsoft Authentication Library (MSAL) to an MVC application, add Microsoft.Identity.Web and

Microsoft.Identity.Web.UI NuGet packages.

In Startup/ConfigureServices() you wire up the communication for open id connect with:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/
https://docs.microsoft.com/en-gb/azure/active-directory-b2c/overview
https://docs.microsoft.com/en-us/azure/active-directory-b2c/technical-overview
https://docs.microsoft.com/en-gb/azure/active-directory-b2c/configure-authentication-sample-web-app
https://docs.microsoft.com/en-gb/azure/active-directory-b2c/add-sign-up-and-sign-in-policy
https://docs.microsoft.com/en-us/learn/modules/enable-external-access-with-b2c/
https://www.youtube.com/watch?v=RNfJW8Fv10U/
https://docs.microsoft.com/en-gb/azure/active-directory-b2c/enable-authentication-web-application
https://docs.microsoft.com/en-us/learn/paths/m365-identity-associate/
https://docs.microsoft.com/en-us/learn/modules/identity-secure-custom-api/

services

 .AddAuthentication(OpenIdConnectDefaults.AuthenticationScheme)

 .AddMicrosoftIdentityWebApp(Configuration.GetSection(“AzureAd”));

Where “AzureAd” is the key for the relevant configuration section. And in Startup/Configure() you add:

app.UseAuthentication();

app.UseAuthorization();

Then set up your application settings with:

 “AzureAd”: {

 "Instance": "https://robdasb2c.b2clogin.com",

 "ClientId": "22222222-2222-2222-2222-222222222222",

 "Domain": "robdasb2c.onmicrosoft.com",

 "SignUpSignInPolicyId": "B2C_1_SignUpAndSignIn",

 "CallbackPath": "/signin-oidc",

 },

In this case you are referencing a user flow policy called SignUpSignInPolicyId which you have to set up in the Azure AD

B2C tenant. The client ID is a GUID that references the application that is registered to your Azure AD B2C tenant.

The call back path is the URI path that comes at the end of the redirect URI for your application registration in your

Azure AD B2C tenant. For example: https://localhost:5001/signin-oidc

Microsoft Graph

https://github.com/Azure-Samples/active-directory-aspnetcore-webapp-openidconnect-v2/tree/master/2-WebApp-

graph-user/2-1-Call-MSGraph

https://github.com/AzureAD/microsoft-identity-web

https://www.youtube.com/watch?v=EBbnpFdB92A

The ASP.NET Core client web app uses the Microsoft.Identity.Web to sign a user in, and obtain a JWT access Tokens from

Azure AD. The access token is used by the client app as a bearer token to call Microsoft Graph.

https://github.com/Azure-Samples/active-directory-aspnetcore-webapp-openidconnect-v2/tree/master/2-WebApp-graph-user/2-1-Call-MSGraph
https://github.com/Azure-Samples/active-directory-aspnetcore-webapp-openidconnect-v2/tree/master/2-WebApp-graph-user/2-1-Call-MSGraph
https://github.com/AzureAD/microsoft-identity-web
https://www.youtube.com/watch?v=EBbnpFdB92A

Permissions
Microsoft identity platform supports two types of permissions:

• Delegated permissions are used by apps that have a signed-in user present.

• Application permissions are used by apps that run without a signed-in user present.

Delegated permissions are provided to the application by the user so the app can perform actions on their behalf. This

doesn't give permissions to the app, instead the user is simply allowing the app to act on their behalf using their

permissions. For these permissions, the effective permissions of your app are the intersection of the delegated

permissions the app has been granted and the privileges of the currently signed-in user. In other words, the app can

never have more privileges than the signed-in user.

Best practices for requesting permissions:

• Only ask for the permissions required for app functionality that has already been implemented.

• When requesting permissions for app functionality, you should request the least-privileged access.

• Apps should gracefully handle scenarios where the user doesn't grant consent to the app when permissions are

requested.

There are two ways to define the permissions an app needs that drives what permissions are listed in the consent dialog:

• Static consent: the permissions are defined in the app's registration within the Azure AD admin center

• Dynamic consent: when the app requests an access token, it specifies the permissions it needs in the scope

property. If the user hasn't already consented to those permissions, they'll go through the consent experience

for the additional permissions. This enables developers to only ask users for the permissions the app needs at

that time.

Client credentials grant flow

On behalf of grant flow

Role Based Access Control (RBAC)
https://docs.microsoft.com/en-us/learn/modules/identity-users-groups-approles/

https://docs.microsoft.com/en-us/learn/modules/identity-users-groups-approles/

https://docs.microsoft.com/en-us/learn/paths/m365-identity-associate/

TrainingContent/Identity/05 Users Groups Roles at master · OfficeDev/TrainingContent

The administrator assigns roles to different users to control who can access to what content and functionality. Using

RBAC with Application Roles and Role Claims, developers can securely enforce authorization in their apps. Users are

managed from the Azure AD admin center (https://aad.portal.azure.com) including users within your organization and

those added as guests in business-to-business (B2B) scenarios. When you register an app in Azure AD, you specify what

types of accounts it will support. While administrators can control which users have access to an app, developers can

account for specific users within the app using RBAC. Developers first create a role definition within the app's

registration in the Azure AD admin center. The code within the app can check if the user has access to certain resources

based on the roles assigned to the user.

 Appendix 8 – RESTful API

https://www.youtube.com/watch?v=0pcM6teVdKk

RESTful Services: architectural pattern for creating an API using HTTP as its underlying communication method. REST

specifies a set of constraints that the system should adhere to. The REST constraints are:

• Client Server – separation of concerns between client and server that separates the evolution of the client’s logic

from the server-side logic

• Stateless – the communication between the client and server must be stateless between requests so that

nothing is stored on the server relating to the client, the request from the client should contain all information

required by the server to process the request. This ensures that each request can be treated independently by

the server

• Cacheable – when the data does not change that often, the server lets the client know how long the data is good

for so that the client does not have to go back to the server for the same data over and over again

• Uniform interface – defines resources in terms of data entities where each resource has a specific URI, and

defines how the HTTP verbs post, get, put, and delete tell the server what to do with the resource; these verbs

generally correspond to the CRUD actions that can be performed and a database table row: create, read,

update, and delete.

• Layered system

• Code on demand (optional)

A RESTful API request contains a verb, request headers (additional information about the request), request body (the

data to be sent to the server). The corresponding server response contains a response body (data sent as a response

from the server), and a response status code.

https://docs.microsoft.com/en-us/learn/paths/m365-identity-associate/
https://github.com/officedev/TrainingContent/tree/master/Identity/05%20Users%20Groups%20Roles
https://www.youtube.com/watch?v=0pcM6teVdKk

Appendix 9 – Study Notes for 2023 Renewal

After achieving Azure developer certification, you must renew it every year by taking a renewal exam.

This appendix contains my 2023 renewal exam study notes.

Skills measured in renewal assessment:

• Explore the Microsoft identity platform

• Implement authentication by using the Microsoft Authentication Library

• Explore Microsoft Graph

• Implement Azure Key Vault

• Implement Azure App Configuration

• Monitor app performance

• Explore Azure Event Grid

• Explore Azure Event Hubs

Microsoft Learn references for skills measured:

• Renewal for Microsoft Certified: Azure Developer Associate

• 1 Explore the Microsoft identity platform

• 2 Implement authentication by using the Microsoft Authentication Library

• 3 Explore Microsoft Graph

• 4 Implement Azure Key Vault

• 5 Implement Azure App Configuration

• 6 Monitor app performance

• 7 Explore Azure Event Grid

• 8 Explore Azure Event Hubs

Additional related Microsoft Learn references that are relevant to the 2023 renewal exam:

• Microsoft identity platform authentication libraries (MSAL)

https://learn.microsoft.com/en-us/azure/active-directory/develop/reference-v2-libraries

• Microsoft OData query options

https://learn.microsoft.com/en-us/odata/concepts/queryoptions-overview

• Microsoft identity platform permissions and consent

https://learn.microsoft.com/en-us/azure/active-directory/develop/permissions-consent-overview

• Microsoft Graph paging

https://learn.microsoft.com/en-us/graph/paging

• Azure Identity client library for .NET

https://learn.microsoft.com/en-us/dotnet/api/overview/azure/identity-readme?view=azure-dotnet

• Authentication flow in MSAL

https://learn.microsoft.com/en-us/azure/active-directory/develop/msal-authentication-flows

• Requesting permissions through consent

https://learn.microsoft.com/en-us/azure/active-directory/develop/consent-types-developer

https://learn.microsoft.com/en-us/certifications/azure-developer/renew/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl
https://learn.microsoft.com/en-us/training/modules/explore-microsoft-identity-platform/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-library/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/microsoft-graph/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/azure-event-grid/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/azure-event-hubs/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/azure/active-directory/develop/reference-v2-libraries
https://learn.microsoft.com/en-us/odata/concepts/queryoptions-overview
https://learn.microsoft.com/en-us/azure/active-directory/develop/permissions-consent-overview
https://learn.microsoft.com/en-us/graph/paging
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/identity-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/azure/active-directory/develop/msal-authentication-flows
https://learn.microsoft.com/en-us/azure/active-directory/develop/consent-types-developer

A9-1 Explore the Microsoft identity platform

When registering an app with AAD tenant, an application object, a globally unique app ID, and a service principal object

are automatically created. The application object resides in the AAD tenant where the app was registered.

Security principal – defines the access policy and permissions in the AAD tenant.

Application object – a template or blueprint to create one or more service principal objects. Has:

• 1:1 relationship with the software application

• 1:many relationship with its corresponding service principal objects

Service principal object – to access resources that are secured by an AAD tenant. Has 3 types:

• Application service principal – local representation of a global application object in a tenant

• Managed identity service principal – provide an identity for applications to use when connecting to resources that

support AAD authentication

• Legacy service principal – an app created before app registrations were introduced

OAuth 2.0 Scopes are permissions needed by app to perform their functions – represented by application ID URI and

permission value. Example: Microsoft Graph application with permission to read users calendar is represented by
https://graph.microsoft.com/Calendars.Read

Permission types:

• Delegated permissions – used by apps that have user or admin consent and have a signed-in user present. The app is

delegated to act as the user when making calls to the target resource.

• Application permission – used by apps that run without a signed-in user present. Only an administrator can consent

to application permissions.

Consent types:

• Static user consent – specify all the permissions in the app's configuration. Static permissions also enable

administrators to consent on behalf of all users in the organization.

• Incremental and dynamic user consent – ask for a minimum set of permissions upfront and request more over time

as the customer uses additional app features. If the user hasn't yet consented to new scopes added to the request,

they'll be prompted to consent only to the new permissions.

• Admin consent – ensures that administrators have additional controls before authorizing access to highly privileged

data. Requires the static permissions registered for the app.

In an authorization request, an app can request permissions using the scope query parameter, for example:

GET https://login.microsoftonline.com/authorize?scope=https://graph.microsoft.com/calendars.read

After the user enters their credentials, Microsoft identity checks for a matching record of consent. If the user hasn't

consented, Microsoft identity asks the user to grant the requested permissions.

Conditional Access Policy – a tool that AAD uses to allow (or deny) access to resources based on identity signals. These

signals include who the user is, where the user is, and what device the user is requesting access from. During sign-in,

Conditional Access collects signals from the user, makes decisions based on those signals, and then enforces that

decision by allowing or denying the access request or challenging for a multifactor authentication response.

Based on these signals, the decision might be to allow full access if the user is signing in from their usual location. If the

user is signing in from an unusual location or a location that's marked as high risk, then access might be blocked entirely

or possibly granted after the user provides a second form of authentication.

Conditional Access enables you to protect services in a multitude of ways including:

• Multifactor authentication

• Allowing only Intune enrolled devices to access specific services

• Restricting user locations and IP ranges

Only in certain cases when an app indirectly or silently requests a token for a service does an app require code changes

to handle Conditional Access challenges. Apps performing the on-behalf-of flow require code to handle Conditional

Access challenges. For example, you are building an app that uses a middle tier service to access a downstream API. An

admin applies a policy to the downstream API. When an end user signs in, the app requests access to the middle tier and

sends the token. The middle tier performs on-behalf-of flow to request access to the downstream API. At this point, a

claims "challenge" is presented to the middle tier. Code change is needed for the middle tier to send the challenge back

to the app.

A9-2 Implement authentication by using the Microsoft Authentication Library (MSAL)

MSAL can be used to provide secure access to Microsoft APIs, third-party web APIs, or your own web API. Using MSAL, a

token can be acquired from a number of application types: web applications, web APIs, single-page apps (JavaScript),

mobile and native applications, and daemons and server-side applications.

MSAL provides many authentication flows including:

Flow Description

Authorization code Enables a client application to obtain authorized access to protected

resources like web APIs.

Client credentials Service applications run without user interaction

On-behalf-of The application calls a service/web API, which in turns calls downstream

service such as Microsoft Graph. The intent is to pass a user's identity and

permissions through the request chain.

Implicit Used in browser-based applications

Device code Enables sign-in to a device by using another device that has a browser

Integrated Windows Windows computers silently acquire an access token when they are domain joined

Interactive Mobile and desktops applications call Microsoft Graph in the name of a user

Username/password The application signs in a user by using their username and password

Application categories for acquiring security tokens:

• Public client applications: run on devices or desktop computers or in a web browser. They're not trusted to safely

keep application secrets, so they only access APIs on behalf of the user (public client flows). Public clients can't hold

configuration-time secrets, so they don't have client secrets.

• Confidential client applications: run on servers (web apps, web API apps, or even service/daemon apps). They're

difficult to access, so they’re capable of keeping an application secret. Confidential clients can hold configuration-

time secrets. Each instance of the client has a distinct configuration (including client ID and client secret).

With MSAL.NET, the way to instantiate an application is by using the application builders: PublicClientApplicationBuilder

and ConfidentialClientApplicationBuilder.

You first need to register your app so that it can be integrated with the Microsoft identity platform. After registering,

you may need:

• The client ID

• The identity provider URL (the instance) and the sign-in audience for your application. These two parameters are

collectively known as the authority.

• The tenant ID if you are writing a line of business application solely for your organization (also named single-tenant

application).

• The application secret (client secret) or certificate, if it's a confidential client app.

• For web apps, and sometimes for public client apps (in particular when your app needs to use a broker), you'll have

also set the redirectUri where the identity provider will contact back your application with the security tokens.

Initializing public client applications:

IPublicClientApplication app = PublicClientApplicationBuilder.Create(clientId).Build();

Initializing confidential client applications:

string redirectUri = "https://myapp.azurewebsites.net";

IConfidentialClientApplication app = ConfidentialClientApplicationBuilder.Create(clientId)

 .WithClientSecret(clientSecret) // builder modifier – set client secret to identify the app

 .WithRedirectUri(redirectUri) // builder modifier - Overrides default redirect URI

 .Build();

Builder modifiers – “.with” methods, are applied as modifiers to the application builder.

For public or confidential clients:

.WithAuthority()

.WithTenantId(string tenantId)

.WithClientId(string)

.WithRedirectUri(string redirectUri)

.WithComponent(string)

.WithDebugLoggingCallback()

.WithLogging()

.WithTelemetry(TelemetryCallback telemetryCallback)

Specifically for confidential clients:

.WithCertificate(X509Certificate2 certificate)

.WithClientSecret(string clientSecret)

Details:

https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-

library/3-initialize-client-applications

https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-library/3-initialize-client-applications
https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-library/3-initialize-client-applications

A9-3 Explore Microsoft Graph

Microsoft Graph is the gateway to the data and intelligence in Microsoft 365. Microsoft Graph is a RESTful web API that

enables you to access Microsoft Cloud service resources. Three main components facilitate the access and flow of data:

• The Microsoft Graph API offers a single endpoint, https://graph.microsoft.com. You can use REST APIs or SDKs to

access the endpoint.

• Microsoft Graph connectors work in the incoming direction, delivering data external to the Microsoft cloud into

Microsoft Graph

• Microsoft Graph Data Connect is a set of tools for delivery of Microsoft Graph data to Azure data stores.

Query Microsoft Graph by using REST
Microsoft Graph has a RESTful web API that enables you to access Microsoft Cloud service resources. The Microsoft

Graph API defines most of its resources, methods, and enumerations in the OData namespace, microsoft.graph . To read

from or write to a resource such as a user or an email message, you construct a request that looks like the following:

{HTTP method} https://graph.microsoft.com/{version}/{resource}?{query-parameters}

where:

{HTTP method} – The HTTP method used on the request to Microsoft Graph.

{version} – The version of the Microsoft Graph API your application is using.

{resource} – The resource in Microsoft Graph that you're referencing.

{query-parameters} – options or REST method parameters to customize the response.

HTTP methods

• GET – Read data from a resource.

• POST – Create a new resource, or perform an action.

• PATCH – Update a resource with new values.

• PUT – Replace a resource with a new one.

• DELETE – Remove a resource.

Versions

• v1.0 includes generally available APIs for all production apps.

• beta includes APIs that are currently in preview (do not use beta APIs in your production apps).

Resource

A resource can be an entity or complex type. Often, top-level resources also include relationships, which you can use to

access other resources, like me/messages or me/drive. You can also interact with resources using methods; for example,

to send an email, use me/sendMail.

Query parameters

Query parameters can be OData system query options, or other strings that a method accepts to customize its response.

For example:

GET https://graph.microsoft.com/v1.0/me/messages?filter=emailAddress eq 'jon@contoso.com'

System query options are $filter, $select, $orderby, $count, $top, $skip and $expand

https://learn.microsoft.com/en-us/odata/concepts/queryoptions-overview

After you make a request, a response is returned that includes:

• HTTP status code that indicates success or failure.

• Response message – The result of the operation (can be empty).

• nextLink – If your request returns a lot of data, you can page through it with the URL in @odata.nextLink.

Query Microsoft Graph by using SDKs
The Microsoft Graph SDKs are designed to simplify building apps that access Microsoft Graph. The SDKs include two

components: a service library and a core library. The service library contains models and request builders when working

with the many datasets available in Microsoft Graph. The core library provides a set of features that enhance working

with all the Microsoft Graph services.

Installing Microsoft Graph .NET SDK uses NuGet packages:

• Microsoft.Graph – for accessing the v1.0 endpoint (dependency on Microsoft.Graph.Core)

• Microsoft.Graph.Beta – for accessing the beta endpoint (dependency on Microsoft.Graph.Core)

• Microsoft.Graph.Core – core library for making calls to Microsoft Graph.

Create a Microsoft Graph client:

// Build a client application.

IPublicClientApplication publicClientApplication = PublicClientApplicationBuilder

 .Create("INSERT-CLIENT-APP-ID")

 .Build();

// Create an authentication provider by passing in a client application and graph scopes.

DeviceCodeProvider authProvider = new DeviceCodeProvider(publicClientApplication, graphScopes);

// Create a new instance of GraphServiceClient with the authentication provider.

GraphServiceClient graphClient = new GraphServiceClient(authProvider);

Read information from Microsoft Graph:

// GET https://graph.microsoft.com/v1.0/me

var user = await graphClient.Me

 .Request()

 .GetAsync();

Retrieve a list of entities:

// GET https://graph.microsoft.com/v1.0/me/messages?$select=subject,sender&$filter=<some condition>&orderBy=receivedDateTime

var messages = await graphClient.Me.Messages

 .Request()

 .Select(m => new {

 m.Subject,

 m.Sender

 })

 .Filter("<filter condition>")

 .OrderBy("receivedDateTime")

 .GetAsync();

https://learn.microsoft.com/en-us/odata/concepts/queryoptions-overview

Delete an entity:

// DELETE https://graph.microsoft.com/v1.0/me/messages/{message-id}

string messageId = "AQMkAGUy...";

var message = await graphClient.Me.Messages[messageId]

 .Request()

 .DeleteAsync();

Create a new entity:

// POST https://graph.microsoft.com/v1.0/me/calendars

var calendar = new Calendar

{

 Name = "Volunteer"

};

var newCalendar = await graphClient.Me.Calendars

 .Request()

 .AddAsync(calendar);

Microsoft Graph Best Practices

Authentication – to access data, present an OAuth 2.0 access token to Microsoft Graph in either of the following ways:

• The HTTP Authorization request header, as a Bearer token

• The graph client constructor, when using a Microsoft Graph client library

Use the Microsoft Authentication Library API, MSAL to acquire the access token to Microsoft Graph.

Consent and authorization best practices:

• Principle of least privilege

• Use the correct permission type based on the scenario: for apps with signed in users, use delegated permissions;

without signed in users, use application permission.

• User experience – configure apps appropriately for who will be consenting, users or administrators. Use static,

dynamic, or incremental consent correctly.

• Multi-tenant applications – tenant administrators can disable the ability of end users to consent, block users

from accessing other users’ profiles, or limit creation of self-service groups, which can result in HTTP 403

(forbidden) errors.

Handling responses reliably and predictably for your end users:

• Pagination – always handle the possibility that the responses are paged in nature, and use the @odata.nextLink

property to obtain the next paged set of results, until all pages of the result set have been read.

• Evolvable enumerations – mechanism that Microsoft Graph API uses to add new enum-members to existing

enumerations without causing a breaking change for applications. If you design your application to handle

unknown enum-members as well, you can opt-in to receive those members by using an HTTP Prefer request

header.

Storing data locally – make calls to Microsoft Graph to retrieve data in real time as necessary. Avoid unnecessarily

caching data locally unless needed for a specific scenario, and in that case implement proper retention and deletion

policies.

A9-4 Implement Azure Key Vault
Azure Key Vault is for:

• Secret management – tokens, passwords, certificates, API keys, and other secrets

• Key management – create and control the encryption keys used to encrypt your data

• Certificate management – public and private SSL/TLS certificates

Service tiers:

• Standard, which encrypts with a software key

• Premium tier, which includes hardware security module (HSM) protected keys

Benefits:

• Centralized application secrets – securely access information by using URIs

• Securely store secrets and keys – Azure RBAC (management plane) or Key Vault access policy (data plane)

• Monitor access and use logs – enable logging for your vault; you can secure and delete logs; configure your key

vault to archive logs to storage accounts, stream logs to an event hub, or send logs to Azure Monitor logs

• Simplified administration of application secrets – security information must be secured, it must follow a life

cycle, and it must be highly available

Authentication:

• System assigned, managed identities for Azure resources – best practice – Azure internally manages the

application's service principal and automatically authenticates the application

• Register the application with your Azure AD tenant

• Authentication to Key Vault in application code using Key Vault SDK

• Authentication to Key Vault with REST. Access tokens are sent using the HTTP Authorization header. For

example:

PUT /keys/MYKEY?api-version=<api_version> HTTP/1.1

Authorization: Bearer <access_token>

When an access token is not accepted or not supplied, an HTTP 401 (unauthorized) error will be returned to the

client, and will include the WWW-Authenticate header containing authorization and resource parameters that

may be used to obtain a valid access token

• Service principal and certificate – not recommended – the app owner must rotate the certificate

• Service principal and secret – not recommended – it’s hard to automatically rotate secrets

Encryption of data in transit:

Azure Key Vault enforces Transport Layer Security (TLS) protocol to protect data when it’s traveling between Azure

Key Vault and clients. Perfect Forward Secrecy (PFS) protects connections between client systems and Microsoft

cloud services by using unique, 2048-bit encryption keys.

Best practices:

• Use separate key vaults per application per environment

• Control access to your key vaults by allowing only authorized applications and users

• Create regular back ups of your vault on update/delete/create of objects within a Vault

• Turn on logging and alerts

• Recovery options: turn on soft-delete and purge protection to guard against force deletion of secrets

Azure CLI code examples

For convenience, initialize some Bash variables:

myKeyVault="CharlesTheFifth"

myResourceGroup="ElizabethTheEighth"

myLocation="canadacentral"

Create an Azure Key Vault:

az keyvault create --name $myKeyVault --resource-group $myResourceGroup --location $myLocation

Create a secret:

az keyvault secret set --vault-name $myKeyVault --name "ExamplePassword" --value "hVFkk965BuUv"

Retrieve a secret:

az keyvault secret show --name "ExamplePassword" --vault-name $myKeyVault

A9-5 Implement Azure App Configuration
Azure App Configuration provides a service to centrally manage application settings and feature flags. App Configuration

complements Azure Key Vault, which is used to store application secrets. The easiest way to add an App Configuration

store to your application is through a client library that Microsoft provides.

Benefits of Azure App Configuration

• fully managed service

• flexible key representations and mappings

• tagging with labels

• feature flag management

• security through Azure managed identities

• encryption

• integration with popular frameworks

Azure App Configuration stores configuration data as key-value pairs.

Keys – Namespaces can be created using hierarchical keys separated by “:” or “/”. Keys can be tagged with different

labels which can be queried:

Key = AppName:DbEndpoint & Label = Test

Keys stored in App Configuration are case sensitive, but some frameworks may handle keys case-insensitively (beware).

Keys can be made up of any unicode characters except the three reserved characters asterisk, comma, backslash (*,\),

however reserved characters can be escaped with a backslash

Common uses for labels include using the same keys for different environments, and key value versioning. Labels can be

null.

Values – You can use all unicode characters for values. There's an optional user-defined content type (for example

encoding scheme) that is associated with each value. The content type can be used to help your application process the

key properly.

Azure App Configuration – Feature Management

Feature flag – a variable with a binary state of on or off and an associated code block.

Feature manager – an application package that handles the lifecycle of feature flags

Filter – a rule for evaluating the state of a feature flag (examples: browser type, geographic location, time window).

Feature flags can also be stored in appsettings.json. For example:

"FeatureManagement": {

 "FeatureA": true, // Feature flag set to on

 "FeatureB": false, // Feature flag set to off

 "FeatureC": {

 "FilterEnabledFor": [

 {

 "Name": "Percentage",

 "Parameters": {

 "Value": 50

 }

 }

]

 }

}

Securing app configuration data

Encrypting configuration data with customer-managed keys – when customer-managed key capability is enabled, the

App Configuration instance uses a managed identity to authenticate with Azure Active Directory. It then wraps and puts

the encryption key in Azure Key Vault, and caches the unwrapped key for an hour. The key is refreshed hourly.

Components needed for customer-managed keys:

• Standard tier Azure App Configuration instance

• Azure Key Vault with soft-delete and purge-protection features enabled

• An RSA or RSA-HSM key within the Key Vault: The key must not be expired, it must be enabled, and it must have

both wrap and unwrap capabilities enabled

To use Azure Key Vault, Azure App Configuration does two steps:

1. Assign a managed identity to the Azure App Configuration instance

2. Grant the identity GET, WRAP, and UNWRAP permissions in the target Key Vault's access policy.

Use private endpoints for Azure App Configuration – to allow clients on a virtual network (VNet) to securely access data

over a private link. Network traffic uses this private link on the Microsoft backbone network, eliminating exposure to the

public internet. You need separate private endpoints for each App Configuration store. The connection string for the

private endpoint is found in the Azure Portal at App Configuration store > Settings > Access Keys. Azure uses a DNS

CNAME to alias a subdomain with the prefix privatelink, and DNS A records for the IP address of the private endpoint.

From within the VNet, the endpoint URL resolves to the private endpoint of the App Configuration store. When resolved

from outside the VNet, the endpoint URL resolves to the public endpoint. When you create a private endpoint, the

public endpoint is disabled.

Managed identities – A managed identity from AAD allows Azure App Configuration to easily access other AAD-

protected resources, such as Azure Key Vault.

• A system-assigned identity is tied to your configuration store. It's deleted if your configuration store is deleted. A

configuration store can only have one system-assigned identity.

• A user-assigned identity is a standalone Azure resource that can be assigned to your configuration store. You can

have multiple user-assigned identities for a configuration store.

A system-assigned identity for an App Configuration store can be created in one step:

// create system-assigned identity for "myAppConfigStore1"

az appconfig identity assign --name myAppConfigStore1 --resource-group myResourceGroup

A user-assigned identity for an App Configuration store requires two steps. First create the identity:

// create user-assigned identity

az identity create --resource-group myResourceGroup --name myUserAssignedIdentity

Then assign its resource identifier to the App Configuration store:

// assign the resource identifier of the identity to "myAppConfigStore2"

az appconfig identity assign \

 --name myAppConfigStore2 \

 --resource-group myResourceGroup \

 --identities /subscriptions/[subscription id]/resourcegroups \

 /myResourceGroup/providers/Microsoft.ManagedIdentity \

 /userAssignedIdentities/myUserAssignedIdentity

A9-6 Monitor app performance
Use the tools in Azure Monitor to enhance the performance and stability of your applications.

Azure Monitor – the center of monitoring in Azure

• obtains telemetry data from various data sources

• stores the data in the data platform

• acts on the data by performing actions such as analysis, alerting, and integration by streaming to external

systems

The Data Platform stores the pillars of observability:

Metrics numerical values that describe some aspect of a system at a point in time,

that are identified with a timestamp, a name, a value, and one or more labels

Logs contain different kinds of data and may be structured or free-form text with a

timestamp

Traces series of related events that follow a user request through a distributed

system

Changes change analysis is a subscription-level observability tool that's built on the

power of Azure Resource Graph

Insights provide a custom monitoring experience:

• Application Insights monitors the availability, performance, and usage of your web applications whether they're

hosted in the cloud or on-premises, enabling you to diagnose errors without waiting for a user to report them

• Container Insights monitors the performance of container workloads that are hosted on Azure Kubernetes

Service (AKS) and Azure Container Instances, and are available in Kubernetes through the Metrics API

• VM Insights monitors your Azure VMs at scale, analysing their performance and health and identifying

dependencies on external processes.

How Application Insights works and how it collects events

Application Insights is an extension of Azure Monitor that provides Application Performance Monitoring (APM).

Features:

Live Metrics Observe activity from your deployed app in real time with no effect

on the host environment.

Availability Probe your apps external endpoint(s) to test the overall availability

and responsiveness over time.

GitHub or Azure DevOps

integration

Create GitHub or Azure DevOps work items in context of Application

Insights data.

Usage Reveals which features are popular and how users interact and use

your app.

Smart Detection Provides automatic failure and anomaly detection through proactive

telemetry analysis

Application Map high level top-down view of the app architecture and visual

references to component health and responsiveness

Distributed Tracing Search and visualize an end-to-end flow of a given execution or

transaction

Application Insights collects Metrics and application Telemetry data, which describe application activities and health, as

well as trace logging data:

• Request rates vs response times and failure rates, can be used to diagnose resourcing problems

• Dependency rates vs response times and failure rates – are external services slowing you down?

• Page views and load performance

• AJAX calls from web pages - rates, response times, and failure rates

• User and session counts

• Performance counters from server machines, such as CPU, memory, and network usage

• Host diagnostics from Docker or Azure

• Diagnostic trace logs from your app – correlate trace events with requests

• Custom events and metrics that you write yourself in the client or server code, to track business events such as

items sold or games won

Log-based Metrics

Application Insights log-based metrics:

• Log-based metrics – more dimensions, better for data analysis and ad-hoc diagnostics

• Standard metrics – stored as pre-aggregated time series, better for performance

Log-based metrics (traditional metrics) developers can use the SDK to emit these events from code, or they can rely on

the automatic collection of events from auto-instrumentation. When the volume of events is too high, Application

Insights implements telemetry volume reduction techniques, which lowers the accuracy of the metrics.

Pre-aggregated metrics (standard metrics) are not stored as individual events but as pre-aggregated time series, so

retrieving data happens much faster and requires less compute power. The collection endpoint pre-aggregates events

before ingestion sampling, which means that ingestion sampling will never impact the accuracy of pre-aggregated

metrics.

Instrument an app for monitoring

Application Insights is enabled through either Auto-Instrumentation (agent) or by adding the Application Insights SDK to

your application code.

Auto-instrumentation is the preferred method. It requires no developer investment and eliminates future overhead

related to updating the SDK. It's also the only way to instrument an application in which you don't have access to the

source code. In essence, all you have to do is enable and - in some cases - configure the agent, which will collect the

telemetry automatically.

Application Insights SDK is only needed in the following circumstances:

• You require custom events and metrics

• You require control over the flow of telemetry

• Auto-Instrumentation isn't available (language or platform limitations)

When using an SDK, the app and its components don't have to be hosted in Azure. The instrumentation monitors your

app and directs the telemetry to an Application Insights resource, using a unique token.

In addition to the Application Insights SDKs, Application Insights also supports distributed tracing through an open

source, vendor-agnostic, single distribution of libraries called OpenCensus. OpenCensus also enables the open-source

community to enable distributed tracing with popular technologies like Redis, Memcached, or MongoDB.

Perform Availability Tests

After you've deployed your web app or website, you can set up Application Insights availability tests, recurring tests that

run at regular intervals from points around the world. You can set up availability tests for any HTTP or HTTPS endpoint

that's accessible from the public internet. You don’t have to own the sight, so you can test the availability of a REST API

that your service depends on.

There are 3 types of availability test:

• URL ping test – validate whether an endpoint is responding and measure performance associated with that

response

• Standard test – includes SSL certificate validity, proactive lifetime check, HTTP request verb (GET, HEAD, POST,

…), custom headers, and custom data associated with your HTTP request

• Custom TrackAvailability test – create custom code to run availability tests and use the TrackAvailability()

method to send the results to Application Insights.

The URL ping test relies on the DNS infrastructure of the public internet to resolve the domain names of the tested

endpoints. If you're using private DNS, you must ensure that the public domain name servers can resolve every domain

name of your test. When that's not possible, you can use custom TrackAvailability tests instead.

Application Map – monitor performance and troubleshoot issues

Application Map helps you spot performance bottlenecks or failure hotspots across all components of your distributed

application. Each node on the map represents an independently deployable part of your distributed/microservices

application (component) or its dependencies; and has health KPI and alerts status. This allows you to visualize complex

topologies with hundreds of components.

Application Map uses the cloud role name property to identify the components on the map. You can manually set or

override the cloud role name and change what gets displayed on the Application Map.

A9-7 Explore Azure Event Grid
Azure Event Grid enables event-driven, reactive programming using the publish-subscribe model.

Publishers emit events, but have no expectation about how the events are handled. Subscribers decide on which events

they want to handle. Event Grid has built-in support for events coming from Azure services, like storage blobs and

resource groups. Event Grid also has support for your own events, using custom topics. Event Grid doesn't guarantee

order for event delivery, so subscribers may receive them out of order.

Event Grid terminology:

Events – What happened. An event is the smallest amount of information that fully describes something that happened

in the system.

Event sources – Where the event took place.

Topics – The endpoint where publishers send events. To respond to certain types of events, subscribers decide which

topics to subscribe to:

• System topics are built-in topics provided by Azure services. You don't see system topics in your Azure

subscription because the publishing resource owns the topics, but you can subscribe to them. As long as you

have access to the resource, you can subscribe to its events.

• Custom topics are applications and third-party topics. When you create or are assigned access to a custom topic,

you see that custom topic in your subscription.

Event subscriptions – The endpoint or built-in mechanism to route events, sometimes to more than one handler.

Subscriptions are also used by handlers to intelligently filter incoming events.

Event handlers – The app or service reacting to the event. You can use a supported Azure service or your own webhook

as the handler.

Event schema

Event sources send events to Event Grid in an array, which can have several event objects. Event Grid sends the events

to subscribers in an array that has a single event. The following example shows the properties that are used by all event

publishers:

[

 {

 "topic": string,

 "subject": string,

 "id": string,

 "eventType": string,

 "eventTime": string,

 "data":{

 object-unique-to-each-publisher

 },

 "dataVersion": string,

 "metadataVersion": string

 }

]

All events have the same following top-level data:

Property Required Description

topic No Full resource path to the event source. This field isn't writeable.

Event Grid provides this value.

subject Yes Publisher-defined path to the event subject.

id Yes Unique identifier for the event.

eventType Yes One of the registered event types for this event source.

eventTime Yes The time the event is generated based on the provider's UTC time.

data No Event data specific to the resource provider.

dataVersion No The schema version of the data object. The publisher defines the

schema version.

metaDataVersion No The schema version of the event metadata. Event Grid defines the

schema of the top-level properties. Event Grid provides this value.

When publishing events to custom topics, create subjects for your events that make it easy for subscribers to know

whether they're interested in the event. Subscribers use the subject to filter and route events. Consider providing the

path for where the event happened, so subscribers can filter by segments of that path.

In addition to its default event schema, Azure Event Grid natively supports events in the JSON implementation of

CloudEvents v1.0 and HTTP protocol binding. CloudEvents is an open specification for describing event data.

Event Grid provides durable delivery. It tries to deliver each event at least once for each matching subscription

immediately.

Retry

If an error returned by the subscribed endpoint is a configuration-related error that can't be fixed with retries (for

example, if the endpoint is deleted), EventGrid will either perform dead-lettering on the event or drop the event if dead-

letter isn't configured.

A send-to-subscriber error doesn't cause a retry when:

Endpoint Error

Azure Resources 400 Bad Request, 413 Request Entity Too Large, 403 Forbidden

Webhook 400 Bad Request, 413 Request Entity Too Large, 403 Forbidden, 404 Not Found,

401 Unauthorized

Note: if Dead-Letter isn't configured, events will be dropped for the above errors

Otherwise, a retry occurs after 30 seconds, followed by exponential backoff retries.

If the endpoint responds within 3 minutes, Event Grid will attempt to remove the event from the retry queue on a best

effort basis but duplicates may still be received. Event Grid adds a small randomization to all retry steps and may

opportunistically skip certain retries if an endpoint is consistently unhealthy, down for a long period, or appears to be

overwhelmed. The functional purpose of delayed delivery is to protect unhealthy endpoints and the Event Grid system.

You can customize the retry policy by using the following two configurations:

• Maximum number of attempts

• Event time-to-live (TTL)

Example:

az eventgrid event-subscription create \

 -g gridResourceGroup \

 --topic-name <topic_name> \

 --name <event_subscription_name> \

 --endpoint <endpoint_URL> \

 --max-delivery-attempts 18

You can configure Event Grid to batch events for delivery for improved performance in high-throughput scenarios using

the following settings:

• Max events per batch – Event Grid doesn't delay events to create a batch if fewer events are available

• Preferred batch size in kilobytes – the batch size may be smaller if more events aren't available, or larger if a

single event is larger than the preferred size

To enable dead-lettering, you must specify a storage account to hold undelivered events when creating the event

subscription.

You can set custom HTTP headers on the events that are delivered to the following destinations:

• Webhooks

• Azure Service Bus topics and queues

• Azure Event Hubs

• Relay Hybrid Connections

This capability allows you to set custom headers that are required by a destination.

Roles

Azure Event Grid allows you to control the level of access given to different users with Azure RBAC. Event Grid provides

the following built-in roles:

• Event Grid Subscription Reader – read Event Grid event subscriptions

• Event Grid Subscription Contributor – manage Event Grid event subscription operations

• Event Grid Contributor – create and manage Event Grid resources

• Event Grid Data Sender – lets you send events to Event Grid topics

The Event Grid Subscription Reader and Event Grid Subscription Contributor roles are for managing event subscriptions.

Permissions

Event handler – If you're using an event handler (other than a WebHook) you need write access to that resource. This

permissions check prevents an unauthorized user from sending events to your resource.

Event source – You must have the Microsoft.EventGrid/EventSubscriptions/Write permission on the resource that

is the event source. You need this permission because you're writing a new subscription at the scope of the resource.

The resource requiring permission differs based on whether you're subscribing to a system topic or custom topic:

• System topics – need permission at the scope of the resource publishing the event. /subscriptions/{subscription-
id}/resourceGroups/{resource-group-name}/providers/{resource-provider}/{resource-type}/{resource-name}

• Custom topics – need permission at the scope of the event grid topic.
/subscriptions/{subscription-id}/resourceGroups/{resource-group-name}/providers/Microsoft.EventGrid/topics/{topic-name}

For system topics, if you are not the owner or contributor of the source resource, you need permission to write a new

event subscription at the scope of the resource publishing the event. For example, to subscribe to an event on a storage

account named myacct, you need the Microsoft.EventGrid/EventSubscriptions/Write permission on:

/subscriptions/####/resourceGroups/testrg/providers/Microsoft.Storage/storageAccounts/myacct

For custom topics, you need permission to write a new event subscription at the scope of the event grid topic. For

example, to subscribe to a custom topic named mytopic, you need the Microsoft.EventGrid/EventSubscriptions/Write

permission on: /subscriptions/####/resourceGroups/testrg/providers/Microsoft.EventGrid/topics/mytopic

Using webhooks to receive events

Event Grid requires you to validate, i.e. prove ownership, of your Webhook endpoint before it starts delivering events to

that endpoint. This requirement prevents a malicious user from flooding your endpoint with events.

When you use any of these Azure services:

• Azure Logic Apps with Event Grid Connector

• Azure Automation via webhook

• Azure Functions with Event Grid Trigger

 the Azure infrastructure automatically handles the validation. For any other type of webhook endpoint, your endpoint

code needs to participate in a validation handshake with Event Grid. There are two kinds of handshake:

Synchronous handshake: At the time of event subscription creation, Event Grid sends a subscription validation event to

your endpoint. The data portion of this event includes a validationCode property. Your application verifies the validation

event by returning the validation code in the response synchronously along with an HTTP 200 status code.

Asynchronous handshake: In certain cases, you can't return the ValidationCode synchronously. For example, if you use a

third-party service, you can't programmatically respond. In this case, Event Grid supports a manual validation

handshake. Event Grid sends a validationUrl property in the data portion of the subscription validation event. To

complete the handshake, find that URL in the event data and do a GET request to it. The provided URL is valid for 5

minutes. If you don't complete the manual validation within 5 minutes, you will have to create the event subscription

again.

If the endpoint returns 200 but doesn't return back a validation response synchronously, the mode is transitioned to the

manual validation mode. If there's a GET on the validation URL within 5 minutes, the validation handshake is considered

to be successful.

Filtering

When creating a subscription, you can add a filter. You can filter on:

• Event types

• Subject begins with or ends with

• Advanced fields and operators

The JSON syntax for filtering by event type is:

"filter": {

 "includedEventTypes": [

 "Microsoft.Resources.ResourceWriteFailure",

 "Microsoft.Resources.ResourceWriteSuccess"

]

}

When publishing events to custom topics, create subjects for your events that make it easy for subscribers to know

whether they're interested in the event. Subscribers use the subject property to filter and route events. The JSON syntax

for filtering by subject is:

"filter": {

 "subjectBeginsWith": "/blobServices/default/containers/mycontainer/log",

 "subjectEndsWith": ".jpg"

}

To filter by values in the data fields and specify the comparison operator, use the advanced filtering option. In advanced

filtering, you specify the:

• operator type - The type of comparison.

• key - The field that you're using for filtering. It can be a number, boolean, or string.

• value or values - The value or values to compare to the key.

The JSON syntax for using advanced filters is:

"filter": {

 "advancedFilters": [

 {

 "operatorType": "NumberGreaterThanOrEquals",

 "key": "Data.Key1",

 "value": 5

 },

 {

 "operatorType": "StringContains",

 "key": "Subject",

 "values": ["container1", "container2"]

 }

]

}

A9-8 Explore Azure Event Hubs
Azure Event Hubs is an event ingestor – a component or service that sits between event publishers and event consumers

to decouple the production of an event stream from the consumption of those events.

Event Hub Terminology

• Event Hubs client is the primary interface for developers interacting with the Event Hubs client library.

• Event Hubs producer is a type of client that serves as a source of data.

• Event Hubs consumer is a type of client which reads information from the Event Hub.

• Partition is an ordered sequence of events that is held in an Event Hubs. Azure Event Hubs provides message

streaming through a partitioned consumer pattern.

• Consumer group is a view of an entire Event Hubs that enable multiple consuming applications to each have a

separate view of the event stream, and to read the stream independently at their own pace and from their own

position within the stream.

• Event receivers are entities that read event data from an Event Hubs.

• Throughput units or Processing units are pre-purchased units of throughput capacity.

Event Hubs Capture

Event Hubs enables you to automatically capture the streaming data in Event Hubs in an Azure Blob storage or Azure

Data Lake Storage account of your choice. Event Hubs Capture enables you to specify your own Azure Blob storage

account and container, or Azure Data Lake Store account, which are used to store the captured data. Event Hubs

Capture enables you to set up a window to control capturing. Each partition captures independently and writes a

completed block blob at the time of capture, named for the time at which the capture interval was encountered.

Storage naming convention:

{Namespace}/{EventHub}/{PartitionId}/{Year}/{Month}/{Day}/{Hour}/{Minute}/{Second}

For example:

https://mystorageaccount.blob.core.windows.net/mycontainer/mynamespace/myeventhub/0/2017/12/08/03/03/17.avro

Event Hubs traffic is controlled by throughput units. A throughput unit is 1 MB per second or 1000 events per second of

ingress and twice that amount of egress. Standard Event Hubs can be configured with 1-20 throughput units, and you

can purchase more. To make it easier for your downstream processing to know that Event Hub Capture is working, Event

Hubs writes empty files when there is no data. This process provides a predictable cadence and marker.

Scale processing applications

To scale your event processing application, you can run multiple instances of the application and have them balance the

load among themselves. Use the .NET EventProcessorClient class. Clients will automatically manage distribution and

balancing of work as instances become available or unavailable for the group. Each event processor is given a unique

identifier and claims ownership of partitions by adding or updating an entry in a checkpoint store. When you create an

event processor, you specify the functions that will process events and errors. Each call to the function that processes

events delivers a single event from a specific partition. Your code must handle this event. If you want to make sure the

consumer processes every message at least once, you need to write your own code with retry logic.

Checkpointing is when an event processor marks the position of the last successfully processed event within a partition.

You can use checkpointing to both mark events as "complete" by downstream applications and provide resiliency when

an event processor goes down.

Thread safety is the responsibility of the consumer processor instance. Events from different partitions can be processed

concurrently, but any shared state that is accessed across partitions must be synchronized.

Control access to events

Azure Event Hubs supports both Azure Active Directory and shared access signatures (SAS) to handle both

authentication and authorization. Built-in AAD roles for authorizing access to Event Hubs data:

• Azure Event Hubs Data Owner: Use this role to give complete access to Event Hubs resources.

• Azure Event Hubs Data Sender: Use this role to give send access to Event Hubs resources.

• Azure Event Hubs Data Receiver: Use this role to give receiving access to Event Hubs resources.

To authorize a request to Event Hubs service from a managed identity in your application, you need to configure Azure

role-based access control settings for that managed identity. When the appropriate AAD role is assigned to a managed

identity, the managed identity is granted access to Event Hubs data at the appropriate scope.

Shared Access Signatures (SAS) can be used to authorize access to Event Hubs publishers but not to consumers.

Typically, an event hub employs one publisher per client. Each Event Hubs client is assigned a unique token with a SAS

key. A client that holds a token can only send to one publisher. If multiple clients share the same token, then each of

them shares the publisher. Clients aren't aware of the SAS key, which prevents clients from manufacturing tokens.

Clients operate on the same tokens until they expire.

Data is consumed from Event Hubs using consumer groups. While SAS policy gives you granular scope, this scope is

defined only at the namespace, event hub instance, or topic level, and not at the consumer level.

Event Hubs Client Library

To interact with Azure Event Hub, use Azure.Messaging.EventHubs

To find out what partitions are available:

var connectionString = "<< CONNECTION STRING FOR THE EVENT HUBS NAMESPACE >>";

var eventHubName = "<< NAME OF THE EVENT HUB >>";

await using (var producer = new EventHubProducerClient(connectionString, eventHubName))

{

 string[] partitionIds = await producer.GetPartitionIdsAsync();

}

To publish events to an Event Hub:

var connectionString = "<< CONNECTION STRING FOR THE EVENT HUBS NAMESPACE >>";

var eventHubName = "<< NAME OF THE EVENT HUB >>";

await using (var producer = new EventHubProducerClient(connectionString, eventHubName))

{

 using EventDataBatch eventBatch = await producer.CreateBatchAsync();

 eventBatch.TryAdd(new EventData(new BinaryData("First")));

 eventBatch.TryAdd(new EventData(new BinaryData("Second")));

 await producer.SendAsync(eventBatch);

}

To read events from an Event Hub:

var connectionString = "<< CONNECTION STRING FOR THE EVENT HUBS NAMESPACE >>";

var eventHubName = "<< NAME OF THE EVENT HUB >>";

// When an Event Hub is created, it provides a default consumer group that can be used to get started

string consumerGroup = EventHubConsumerClient.DefaultConsumerGroupName;

await using (var consumer = new EventHubConsumerClient(consumerGroup, connectionString, eventHubName))

{

 using var cancellationSource = new CancellationTokenSource();

 cancellationSource.CancelAfter(TimeSpan.FromSeconds(45));

 await foreach (PartitionEvent receivedEvent in consumer.ReadEventsAsync(cancellationSource.Token))

 {

 // At this point, the loop will wait for events to be available in the Event Hub. When an event

 // is available, the loop will iterate with the event that was received. Because we did not

 // specify a maximum wait time, the loop will wait forever unless cancellation is requested using

 // the cancellation token.

 }

}

Read all published events for the first partition of the Event Hub:

var connectionString = "<< CONNECTION STRING FOR THE EVENT HUBS NAMESPACE >>";

var eventHubName = "<< NAME OF THE EVENT HUB >>";

string consumerGroup = EventHubConsumerClient.DefaultConsumerGroupName;

await using (var consumer = new EventHubConsumerClient(consumerGroup, connectionString, eventHubName))

{

 EventPosition startingPosition = EventPosition.Earliest;

 string partitionId = (await consumer.GetPartitionIdsAsync()).First();

 using var cancellationSource = new CancellationTokenSource();

 cancellationSource.CancelAfter(TimeSpan.FromSeconds(45));

 await foreach (PartitionEvent receivedEvent in consumer.ReadEventsFromPartitionAsync(

 partitionId, startingPosition, cancellationSource.Token))

 {

 // At this point, the loop will wait for events to be available in the partition. When an event

 // is available, the loop will iterate with the event that was received. Because we did not

 // specify a maximum wait time, the loop will wait forever unless cancellation is requested using

 // the cancellation token.

 }

}

Process events from Azure Event Hub:

var cancellationSource = new CancellationTokenSource();

cancellationSource.CancelAfter(TimeSpan.FromSeconds(45));

// Since the EventProcessorClient has a dependency on Azure Storage blobs for persistence of its state,

// you'll need to provide a BlobContainerClient for the processor, which has been configured for the

// storage account and container that should be used.

var storageConnectionString = "<< CONNECTION STRING FOR THE STORAGE ACCOUNT >>";

var blobContainerName = "<< NAME OF THE BLOB CONTAINER >>";

var eventHubsConnectionString = "<< CONNECTION STRING FOR THE EVENT HUBS NAMESPACE >>";

var eventHubName = "<< NAME OF THE EVENT HUB >>";

var consumerGroup = "<< NAME OF THE EVENT HUB CONSUMER GROUP >>";

Task processEventHandler(ProcessEventArgs eventArgs) => Task.CompletedTask;

Task processErrorHandler(ProcessErrorEventArgs eventArgs) => Task.CompletedTask;

var storageClient = new BlobContainerClient(storageConnectionString, blobContainerName);

var processor = new EventProcessorClient(

 storageClient, consumerGroup, eventHubsConnectionString, eventHubName);

processor.ProcessEventAsync += processEventHandler;

processor.ProcessErrorAsync += processErrorHandler;

await processor.StartProcessingAsync();

try

{

 // The processor performs its work in the background; block until cancellation

 // to allow processing to take place.

 await Task.Delay(Timeout.Infinite, cancellationSource.Token);

}

catch (TaskCanceledException)

{

 // This is expected when the delay is canceled.

}

try

{

 await processor.StopProcessingAsync();

}

finally

{

 // To prevent leaks, the handlers should be removed when processing is complete.

 processor.ProcessEventAsync -= processEventHandler;

 processor.ProcessErrorAsync -= processErrorHandler;

}

Appendix 10 – Study Notes for 2024 Renewal

After achieving Azure developer certification, you must renew it every year by taking a renewal exam.

This appendix contains my 2023 renewal exam study notes.

Skills measured in renewal assessment:

• Explore Azure Functions

• Develop Azure Functions

• Implement Azure Key Vault

• Implement Azure App Configuration

• Monitor app performance

• Implement Azure Container Apps

• Manage container images in Azure Container Registry

• Run container images in Azure Container Instances

• Work with Azure Cosmos DB

• Consume an Azure Cosmos DB for NoSQL change feed using the SDK

Microsoft Learn:

• Renewal for Microsoft Certified: Azure Developer Associate

• Explore Azure Functions

• Develop Azure Functions

• Implement Azure Key Vault

• Implement Azure App Configuration

• Monitor app Performance

• Implement Azure Container Apps

• Manage container images in Azure Container Registry

• Run container images in Azure Container Instances

• Work with Azure Cosmos DB

• Consume an Azure Cosmos DB for NoSQL change feed using the SDK

https://learn.microsoft.com/en-us/certifications/azure-developer/renew/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl
https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/work-with-cosmos-db/?ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/consume-azure-cosmos-db-sql-api-change-feed-use-sdk/?ns-enrollment-type=Collection

A10-1 Explore Azure Functions

https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/

Azure Functions is an integration and automation service for solving integration problems and automating business

processes. They can define inputs, actions, conditions, and outputs.

Hosting options

• Consumption plan: default; only pay when functions are running;

• Premium plan: more powerful; pre-warmed workers; connects to virtual networks;

• Dedicated plan: runs functions within an App Service Plan at regular plan rates;

• ASE: App Service Environment; dedicated and fully isolated; securely runs apps at high scale;

• Kubernetes: dedicated and fully isolated on top of the Kubernetes platform

The FunctionTimeout property in the host.json project file specifies the timeout duration. After the trigger starts

function execution, the function needs to return/respond within the timeout duration. On any plan, a function app

requires a general Azure Storage account, which supports Azure Blob, Queue, Files, and Table storage. Function code

files are stored on Azure Files shares on the function's main storage account. When you delete the main storage account

of the function app, the function code files are deleted and can't be recovered.

Compare Functions and Logic Apps

Both Functions and Logic Apps are Azure Services that enable serverless workloads. Azure Functions is a serverless

compute service, whereas Azure Logic Apps is a serverless workflow integration platform. Both can create complex

orchestrations, a set of steps, or actions, to accomplish a complex task.

 Azure Functions Logic Apps

Development Code-first (imperative) Designer-first (declarative)

Connectivity About a dozen built-in binding types,

write code for custom bindings

Large collection of connectors,

Enterprise Integration Pack for B2B

scenarios, build custom connectors

Actions Each activity is an Azure function; write

code for activity functions

Large collection of ready-made actions

Monitoring Azure Application Insights Azure portal, Azure Monitor logs

Management REST API, Visual Studio Azure portal, REST API, PowerShell,

Visual Studio

Execution context Runs in Azure, or locally Runs in Azure, locally, or on premises

https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/

Compare Functions and WebJobs

Both are built on Azure App Service and support features such as source control integration, authentication, and

monitoring with Application Insights integration. Azure Functions offers more developer productivity than Azure App

Service WebJobs does. It also offers more options for programming languages, development environments, Azure

service integration, and pricing. For most scenarios, it's the best choice.

Scaling

In the Consumption and Premium plans, Azure scales CPU and memory by adding more instances of the function app –

all functions within an instance scale at the same time. The number of instances is determined by the number of events

that trigger a function.

Consumption plan

Each instance of the function app is limited to 1.5 GB of memory and one CPU. Function apps that share the same

Consumption plan scale independently. Scales automatically based on number of incoming events, but isn’t predictive.

Premium plan

The plan size determines the available memory and CPU for all apps in an instance. Scales automatically based on

number of incoming events, but isn’t predictive.

Dedicated plan

Manual autoscaling based on predictive usage.

ASE

Manual autoscaling based on predictive usage.

Kubernetes

Event driven scaling based on KEDA (Kubernetes event driven auto-scaler).

Scale Controller

A component called the scale controller is used to monitor the rate of events and determine whether to scale out or

scale in based on heuristics for each trigger type.

Other Scaling behaviors

• Maximum instances: A single function app only scales out to a maximum of 200 instances. A single instance may

process more than one message or request at a time though, so there isn't a set limit on number of concurrent

executions. By default, Consumption plan functions scale out to as many as 200 instances, and Premium plan

functions scales out to as many as 100 instances. You can specify a lower maximum for a specific app by

modifying the functionAppScaleLimit value.

• New instance rate: For HTTP triggers, new instances are allocated, at most, once per second. For non-HTTP

triggers, new instances are allocated, at most, once every 30 seconds.

A10-2 Develop Azure Functions

https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/

A function contains two important pieces - your code, and some config, the function.json file. The function.json file

defines the function's trigger, bindings, and other configuration settings. The bindings property is where you configure

both triggers and bindings. Every binding requires the following settings:

• type: Name of binding. For example, queueTrigger.

• direction: Receiving data into the function or sending data from the function.

• name: The name that is used for the bound data in the function. For example, myQueue.

A function app provides an execution context in which your functions run. It's the unit of deployment and management

for your functions, so that your functions can be managed, deployed, and scaled together.

The code for all the functions in a specific function app is located in a root project folder that contains a host

configuration file, host.json, that contains runtime-specific configurations. A bin folder contains packages and other

library files that the function app requires. Specific folder structures required by the function app depend on language.

Example function.json file:

{

 "disabled":false,

 "bindings": [

 {

 "type": "queueTrigger",

 "direction": "in",

 "name": "order",

 "queueName": "myqueue-items",

 "connection": "MY_STORAGE_ACCT_APP_SETTING"

 },

 {

 "type": "table",

 "direction": "out",

 "name": "$return",

 "tableName": "outTable",

 "connection": "MY_TABLE_STORAGE_ACCT_APP_SETTING"

 }

]

}

In this example, for the input binding, the name property identifies a function parameter, in this case the function is

required to have a parameter named “order”. For the output binding, the name parameter specifies how the function

provides the output value, in this case by using the function return value.

JavaScript example to implement the above function.json:

module.exports = async function (context, order) {

 order.PartitionKey = "Orders";

 order.RowKey = Math.random().toString();

https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/

 context.bindings.order = order;

};

C# script example:

public static Person Run(JObject order, ILogger log)

{

 return new Person() {

 PartitionKey = "Orders",

 RowKey = Guid.NewGuid().ToString(),

 Lastname = order["Lastname"].ToString(),

}

public class Person

{

 public string PartitionKey { get; set; }

 public string RowKey { get; set; }

 public string Lastname { get; set; }

}

In a C# class library, the same trigger and binding information is provided by attributes instead of a function.json file:

public static class QueueToTableExample

{

 [FunctionName("QueueToTableExample ")]

 [return: Table("outTable", Connection = "MY_TABLE_STORAGE_ACCT_APP_SETTING")]

 public static Person Run(

 [QueueTrigger("myqueue-items", Connection = "MY_STORAGE_ACCT_APP_SETTING")]JObject order,

 ILogger log)

 {

 return new Person() {

 PartitionKey = "Orders",

 RowKey = Guid.NewGuid().ToString(),

 Lastname = order["Lastname"].ToString(),

 }

}

public class Person

{

 public string PartitionKey { get; set; }

 public string RowKey { get; set; }

 public string Lastname { get; set; }

}

Triggers and bindings

Triggers and bindings let you avoid hardcoding access to other services. Triggers have associated data, which is often

provided as the payload of the function. Data from bindings is provided to the function as parameters.

In compiled languages such as C# class libraries and Java, triggers and bindings are defined by decorating methods and

parameters with attributes or annotations. The parameter type defines the data type for input data. Use a custom type

to de-serialize to an object. Binding directions are inferred from the parameter type.

In scripting languages such as C# script and JavaScript, triggers and bindings are defined by updating function.json and

can be edited in the portal. For their data types, use the dataType property in the function.json file:

{

 "dataType": "binary",

 "type": "httpTrigger",

 "name": "req",

 "direction": "in"

}

Connect functions to Azure services

Connection details are referenced by names from the project’s configuration provider allowing them to be changed

across environments. For example, in function.json you would set a property called connection to the name of an

environment variable that contains the connection string. The default configuration provider uses environment variables

that are set in Application Settings when running in Azure, or from the local settings file when developing locally.

Some connections in Azure Functions are configured to use an identity instead of a secret. Identity-based connections

use a managed identity. When run in other contexts, such as local development, your developer identity is used instead.

Whatever identity is being used must have permissions to perform the intended actions. This is typically done by

assigning a role in Azure RBAC, or specifying the identity in an access policy.

A10-3 Implement Azure Key Vault

https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/

Azure Key Vault is used to manage secrtets, keys, certificates. A vault is logical group of secrets.

• Secrets: anything that you want to tightly control access to such as tokens, passwords, certificates, API keys, and

other secrets.

• Keys: encryption keys.

• Certificates: SSL/TLS certificates for use with Azure and your internal connected resources.

Supports two types of containers: vaults and HSM pools. HSM=Hardware Security Module

vaults HSM pools

Software backed HSM backed HSM backed

keys, secrets, certificates keys, secrets, certificates keys only

Tiers

• Standard: encrypts with a software key

• Premium: encrypts with a software key, or HSM-protected keys

Benefits

Centralized application secrets, securely accessed using URIs. URIs allow the applications to retrieve specific versions of

a secret.

Securely store secrets and keys with authentication and authorization. Authentication is done via Microsoft Entra ID.

Authorization is done through Azure RBAC when dealing with the management of the vaults, and through key vault

access policy when attempting to access data stored in a vault.

Monitor access and use by enabling logging for your vaults. Logs can be archived to a storage account, streamed to an

event hub, or sent to Azure Monitor logs.

Simplified administration by securing secrets, following a life cycle for the secrets, and making secrets highly available.

This is accomplished by:

https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/

• Removing the need for in-house knowledge of HSM.

• Scaling up on short notice to meet usage spikes.

• Replicating contents to a secondary region, for failover and high availability.

• Standardize administration via the portal, Azure CLI and PowerShell

• Automating tasks on certificates from Public CAs such as enrollment and renewal.

Authentication

1. Managed identities: Recommended approach. You can assign identities to Azure resources such as VM’s, apps,

etc. Azure then manages authentication behind the scenes, automatically authenticating the application with

other Azure services.

2. Service principal and certificate: Not recommended because it’s hard to rotate the certificate.

3. Service principle and secret: Not recommended because it’s hard to rotate the secret.

Authenticating without managed identity

If you can't use managed identity, you instead register the application with your Microsoft Entra tenant, creating a

second application object that identifies the app across all tenants.

Authentication to Key Vault in application code is done with the Key Vault SDK using the Azure Identity client library.

When authenticating to Key Vault with REST, access tokens must be sent to the service using the HTTP Authorization

header:

PUT /keys/MYKEY?api-version=<api_version> HTTP/1.1

Authorization: Bearer <access_token>

On failure an HTTP 401 error is returned to the client and will include the WWW-Authenticate header, for example:

401 Not Authorized

WWW-Authenticate: Bearer authorization="…", resource="…"

where:

• authorization is the address of the OAuth2 authorization service that may be used to obtain an access token for

the request

• resource is the name of the to use in the authorization request

Encryption of data in transit

Data travelling between Key Vault and clients is protected by TLS. Connections between clients and Microsoft cloud

services are also protected by PFS (Perfect Forward Security) and RSA-based 2,048-bit encryption.

Best Practices

• Use separate key vaults per application per environment.

• Secure access to your key vaults by allowing only authorized applications and users and by following the

principle of least privilege.

• Create regular back ups of your vault.

• Turn on logging and alerts.

• Turn on soft-delete and purge protection to guard against accidental or force deletion of the secret.

A10-4 Implement Azure App Configuration

https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/

Azure App Configuration is a service to centrally manage application settings and feature flags.

Key-value pairs

Keys serve as the name for key-value pairs. Keys stored in App Configuration are case-sensitive, unicode-based strings.

The keys app1 and App1 are distinct. Use any unicode character in key names entered into App Configuration except for

*, ,, and \. There's a combined size limit of 10,000 characters on a key-value pair. You can organize keys into a

hierarchical namespace by using a character delimiter, such as / or : for example

AppName:Service1:ApiEndpoint

AppName:Region1:DbEndpoint

Key values can optionally have a label attribute to differentiate key values with the same key. Common uses of labels are

to specify multiple environments, and managing versioning. By default, the label is empty, or null.

Values can use all unicode characters. There's an optional user-defined content type attribute associated with each

value.

Configuration data stored in an App Configuration store is encrypted at rest and in transit.

Features Flags

Feature management decouples feature release from code deployment enabling quick changes to feature availability. A

feature flag is a variable with a state of on or off and an associated code block. The state of the flag triggers whether the

code block runs. A feature manager is an application package that handles the lifecycle of the feature flags in an

application. A filter is a rule for evaluating the state of a feature flag, and can be based on things like a user group, a

device or browser type, a geographic location, a time window, etc.

Feature flags have two components:

• An application that makes use of feature flags.

• A separate repository that stores the feature flags and their current states.

if (featureFlag) {

 // This following code will run if the featureFlag value is true

} else {

 // This following code will run if the featureFlag value is false

}

https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/

Feature flag declarations have a name and a list of one or more filters.

"FeatureManagement": {

 "FeatureA": true, // Feature flag set to on

 "FeatureB": false, // Feature flag set to off

 "FeatureC": {

 "EnabledFor": [

 {

 "Name": "Percentage",

 "Parameters": {

 "Value": 50

 }

 }

]

 }

}

You should externalize all the feature flags used in an application allowing you to change feature flag states without

modifying the application itself. Azure App Configuration is a centralized repository for feature flags. You use the App

Configuration libraries for various programming language frameworks to easily access these feature flags from your

application.

Secure app configuration

• Customer-managed keys

• Private endpoints

• Managed identities

Customer managed keys

The following components are required to successfully enable the customer-managed key capability

• Standard tier Azure App Configuration instance

• Azure Key Vault with soft-delete and purge-protection features enabled

• An RSA or RSA-HSM key within the Key Vault

To allow Azure App Configuration to use the Key Vault key:

1. Assign a managed identity to the Azure App Configuration instance

2. Grant the identity GET, WRAP, and UNWRAP permissions in the target Key Vault's access policy.

Private endpoints

Private endpoints for Azure App Configuration allow clients on a VNet to securely access data over a private link. The

private endpoint uses an IP address from the VNet address space for your App Configuration store.

Managed identities

A managed identity from Microsoft Entra ID allows Azure App Configuration to access other Microsoft Entra ID-

protected resources, such as Azure Key Vault.

Two types of managed identities:

• A system-assigned identity is deleted if your configuration store is deleted. A configuration store can only have

one system-assigned identity.

• A user-assigned identity is a standalone Azure resource that can be assigned to your configuration store. A

configuration store can have multiple user-assigned identities.

To add a system-assigned managed identity to an existing configuration store:

az appconfig identity assign \

 --name myTestAppConfigStore \

 --resource-group myResourceGroup

To add a user-assigned managed identity to an existing configuration store, first create the identity:

az identity create --resource-group myResourceGroup --name myUserAssignedIdentity

and then assign it to the configuration store:

az appconfig identity assign --name myTestAppConfigStore \

 --resource-group myResourceGroup \

 --identities \

/subscriptions/[subscription

id]/resourcegroups/myResourceGroup/providers/Microsoft.ManagedIdentity/userAssignedIdentities/myUserAssignedIden

tity

A10-5 Monitor app Performance

https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/

Application Insights

Azure Monitor Application Insights provides APM (Application Performance Monitoring) by collecting events such as

metrics and application Telemetry data, which describe application activities and health, as well as trace logging data.

Application Insights monitors:

• Request rates, response times, and failure rates. Which pages are most popular?

• Dependency rates, response times, and failure rates. Find out whether external services are slowing you down?

• Exceptions – analyze aggregated statistics, or specific instance stack traces and related requests.

• Page views and load performance from users' browsers.

• AJAX calls – rates, response times, and failure rates.

• User and session counts – statistics.

• Performance counters such as CPU, memory, and network usage from the server.

• Host diagnostics from Docker or Azure.

• Diagnostic trace logs from your app – correlate trace events with requests.

• Custom events and metrics that you write yourself in the client or server code

Metrics

Observe activity from your deployed application in real time with no effect on the host environment.

Log-based metrics

Developers can send events manually by writing code, or they can rely on the automatic collection of events from auto-

instrumentation.

For situations when the volume of events is too high, Application Insights implements telemetry volume reduction

techniques. Unfortunately, lowering the number of stored events also lowers the accuracy of the metrics.

Pre-aggregated metrics

The pre-aggregated metrics aren't stored as individual events, but rather as pre-aggregated time series enabling near

real-time alerting. The newer SDKs pre-aggregate metrics during collection, resulting in less data ingestion and lower

cost, and accuracy isn't affected by sampling or filtering.

Instrument app for monitoring

Application Insights is enabled either through Auto-Instrumentation agents, or by adding the Application Insights SDK or

the OpenCensus SDK, to your application code.

https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/

Auto-instrumentation is the preferred instrumentation method. It requires no developer investment. It's also the only

way to instrument an application in which you don't have access to the source code.

You only need to use an SDK when you want additional control of the flow of telemetry, custom events, or when auto-

instrumentation isn’t available. To use an SDK, you install a small instrumentation package in your app. The app and its

components don't have to be hosted in Azure.

Availability tests

Probe your applications external endpoint(s) to test the overall availability and responsiveness over time. You can set up

availability tests for any HTTP or HTTPS endpoint that's accessible from the public internet. You don't have to make any

changes to the website, and it doesn't even have to be a site that you own, so you can test other sites that your site

depends on.

There are three types of availability tests:

• URL ping test to validate whether an endpoint is responding and measure performance associated with that

response;

• Standard test, similar to ping test, and also includes SSL certificate check, HTTP request verb, common headers,

and other custom request data.

• Custom TrackAvailability test (previously called multi-step test) can be run using the TrackAvailability() method.

Application Map

A high-level top-down view of the application architecture, component health and responsiveness. It helps you spot

problems across all components of your distributed application. Components are independently deployable parts of

your application. In addition to components, you can view external dependencies such as SQL, Event Hubs, etc.

The app map finds components by following HTTP dependency calls made between servers with the Application Insights

SDK installed. When you first load the application map, a set of queries is triggered to discover the components related

to this component. If all of the components are within a single Application Insights resource, then this discovery step

isn't required. One of the key objectives with this experience is to be able to visualize complex topologies with hundreds

of components. Click on any component to see related insights and go to the performance and failure triage experience

for that component.

Here is an example of an application map:

A10-6 Implement Azure Container Apps

https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/

The top-level resource used by Azure Container Apps for grouping containers is the Environment. The hierarchy is as

follows:

• Environment

o Container Apps

▪ Revisions

• Replicas

o Containers

Azure Container Apps enables you to run microservices and containerized applications on a serverless platform that runs

on top of Azure Kubernetes Service.

To create a container app:

1. Create resource group

https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/

az group create \

 --name $myRG \

 --location $myLocation

2. Create environment

az containerapp env create \

 --name $myAppContEnv \

 --resource-group $myRG \

 --location $myLocation

3. create the container app

az containerapp create \

 --name my-container-app \

 --resource-group $myRG \

 --environment $myAppContEnv \

 --image mcr.microsoft.com/azuredocs/containerapps-helloworld:latest \

 --target-port 80 \

 --ingress 'external' \

 --query properties.configuration.ingress.fqdn

Azure Container Apps manage Kubernetes and container orchestration for you.

Multiple containers

You can define multiple containers in a single container app to implement the sidecar pattern. They share hard disk and

network resources and experience the same application lifecycle. To run multiple containers in a container app, add

more than one container in the containers array of the container app template.

Container registries

You can deploy images hosted on private registries by providing credentials in the Container Apps configuration.

{

 ...

 "registries": [{

 "server": "docker.io",

 "username": "my-registry-user-name",

 "passwordSecretRef": "my-password-secret-name"

 }]

}

Limitations

• Privileged containers: Azure Container Apps can't run a process in a container that requires root access, the

container experiences a runtime error.

• Operating system: Linux/amd64 container images.

Authentication and authorization

Azure Container Apps provides built-in authentication and authorization, providing out-of-the-box authentication with

federated identity providers. Federated identity are third-party identity providers that manage the user identities and

authentication flow for you. This feature should only be used with HTTPS.

Configure your container app for authentication from your container app's ingress configuration:

• Ensure allowInsecure is disabled.

• set Restrict access setting to Require authentication to restrict access to authenticated users.

• set Restrict access setting to Allow unauthenticated to not restrict access.

The following identity providers are available:

Provider Sign-in endpoint

Microsoft Identity Platform /.auth/login/aad

Facebook /.auth/login/facebook

GitHub /.auth/login/github

Google /.auth/login/google

Twitter /.auth/login/twitter

Any OpenID Connect provider /.auth/login/<providerName>

The authentication and authorization middleware component runs as a sidecar container in your application. When

enabled, every incoming HTTP request passes through the security layer before being handled by your application. The

middleware handles:

• Authenticating users and clients with an identity provider

• Managing the authenticated session

• Injecting identity information into HTTP request headers

The module runs in a separate container, isolated from your application code, so the security container doesn't run in-

process, and no direct integration with specific language frameworks is possible.

Authentication flow

The authentication flow depends on whether the container app uses the provider SDK.

• With provider SDK: (client flow): The application signs users in, with SDK.

For example: browser app.

• Without the SDK: (server flow): The application delegates sign-in to the provider.

For example: mobile app.

Revisions

Azure Container Apps implements versioning by creating revisions. A revision is an immutable snapshot of a container

app version. New revisions are created when you update your application with revision-scope changes. A revision-scope

change is any change to the parameters in the properties.template section of the container app resource template. You

can control which revisions are active, and the external traffic that is routed to each active revision.

You can set the revision suffix in the ARM template, through the Azure CLI az containerapp create and az containerapp

update commands, or when creating a revision via the Azure portal. With the az containerapp update command you can

modify environment variables, compute resources, scale parameters, and deploy a different image. If your container app

update includes revision-scope changes, a new revision is generated. You can list all revisions associated with your

container app with the az containerapp revision list command.

Secrets

Container Apps doesn't support Azure Key Vault integration. Instead, enable managed identity in the container app and

use the Key Vault SDK in your app to access secrets. Once secrets are defined at the application level, secured values are

available to container apps.

• Secrets are scoped to an application, outside of any specific revision.

• Adding, removing, or changing secrets doesn't generate new revisions.

• Each application revision can reference one or more secrets.

• Multiple revisions can reference the same secret(s).

When a secret is updated or deleted, you can respond in one of two ways:

• Deploy a new revision.

• Restart an existing revision.

Before you delete a secret, deploy a new revision that no longer references the old secret. Then deactivate all revisions

that reference the secret.

Defining secrets

When you create a container app, secrets are defined using the --secrets parameter. For example:

az containerapp create \

 --resource-group "my-resource-group" \

 --name queuereader \

 --environment "my-environment-name" \

 --image demos/queuereader:v1 \

 --secrets "queue-connection-string=$CONNECTION_STRING"

In this example, the local computer’s CONNECTION_STRING environment variable is used to create a secret called

queue-connection-string.

You can also set environment variables within the container to the value of a secret. Set its value to secretref:, followed

by the name of the secret.

az containerapp create \

 --resource-group "my-resource-group" \

 --name myQueueApp \

 --environment "my-environment-name" \

 --image demos/myQueueApp:v1 \

 --secrets "queue-connection-string=$CONNECTIONSTRING" \

 --env-vars "QueueName=myqueue" "ConnectionString=secretref:queue-connection-string"

Dapr

The Distributed Application Runtime (Dapr) is a set of incrementally adoptable features that simplify the authoring of

distributed, microservice-based applications. Dapr enables reliable and secure application intercommunication through

messaging via pub/sub or service-to-service calls.

Dapr APIs:

Azure Container Apps provides:

• managed and supported Dapr integration

• Dapr version upgrades seamlessly

• simplified Dapr interaction model to increase developer productivity

The following Dapr example is based on the Pub/sub API:

Azure Container Apps provides three channels to configure Dapr:

• Container Apps CLI

• Infrastructure as Code (IaC), Bicep or ARM templates

• The Azure portal

By default, all Dapr-enabled container apps within the same environment load the full set of deployed components. This

can be overridden by using application scopes.

Terms:

KEDA: Kubernetes Event-driven Autoscaler

Blue/Green deployment: is an application release model that gradually transfers user traffic from a previous version of

an app or microservice to a nearly identical new release—both of which are running in production. –

https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment

A/B testing: at its most basic, is a way to compare two versions of something to figure out which performs better. –

https://hbr.org/2017/06/a-refresher-on-ab-testing

Service discovery: the process of automatically detecting devices and services on a computer network. It aims to reduce

the manual configuration effort required from users and administrators. A service discovery protocol (SDP) is a network

protocol that helps accomplish service discovery. – https://en.wikipedia.org/wiki/Service_discovery

A10-7 Manage container images in Azure Container Registry

https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/

ACR groups images by repositories.

An image is a read-only snapshot of a Docker-compatible container. ACR can include both Windows and Linux images.

Use the Azure Container Registry (ACR) service with your existing container development and deployment pipelines, or

use Azure Container Registry Tasks to build container images in Azure.

High numbers of repositories and tags can impact ACR performance. Periodically delete unused registry resources as

part of your registry maintenance routine. Deleted resources can't be recovered.

Security and data protection

ACR uses encryption-at-rest for image data security. In Premium tier, ACR uses geo-redundancy for image data

protection. ACR stores data in the region where the registry is created, to help meet data residency compliance

requirements.

In Premium service tier, zone redundancy uses Azure availability zones to replicate your registry to a minimum of three

separate zones within a region. ACR may also store registry data in a paired region in the same geography (geo-

replication), in all regions except Brazil South and Southeast Asia where registry data is confined to the same region.

Tiers

Basic: cost-optimized entry point for developers. Basic has the same programmatic capabilities as Standard and

Premium, but with storage and image throughput appropriate for lower usage scenarios.

Standard: same capabilities as Basic, with increased storage and throughput. Should satisfy the needs of most

production scenarios.

Premium: highest amount of included storage and throughput, enabling high-volume scenarios. Adds geo-replication for

managing a single registry across multiple regions, content trust for image tag signing, and private link with private

endpoints to restrict access to the registry.

ACR Tasks

ACR Tasks provide cloud-based container image build automation. By default, ACR Tasks builds images for the Linux OS

and the amd64 architecture. Specify the --platform tag to build Windows images or Linux images for other architectures,

using the OS/architecture/variant format (for example, --platform Linux/arm64/v8).

Quick tasks

Build and push a container image to ACR in Azure, without needing a local Docker Engine. Think docker build, docker

push in the cloud. Using the familiar docker build format, the az acr build CLI command sends a set of files to build to

ACR Tasks and pushes the built image to its registry upon completion.

https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/

Automatically triggered tasks

Tasks can be triggered by source code updates, updates to a container's base image, or timers.

• Source code update: Trigger an ACR Tasks-created webhook, on an update to a repository in GitHub or Azure

DevOps.

• Base image update: either in your registry or in a public repo, ACR Tasks can automatically build any application

images based on it.

• Schedule: schedule a task by setting up one or more timer triggers.

Multi-step tasks

Multi-step tasks, defined in a YAML file specify individual build and push operations for container images, with each step

using the container as its execution environment.

Dockerfile

A Dockerfile is a script to build a Docker image. For example:

Base image

FROM mcr.microsoft.com/dotnet/runtime:6.0

Set working directory

WORKDIR /app

Copy the previously published app to the container's /app directory

COPY bin/publish/ .

Expose port 80 on the container

EXPOSE 80

Command to run when the container starts

CMD ["dotnet", "MyApp.dll"]

Each of these steps creates a cached container image. These temporary images are layered and presented as single

image once all steps complete.

Build and run image using Azure CLI

This example shows how to Build and run a container image by using ACR Tasks.

create a resource group

az group create --name az204-acr-rg --location <myLocation>

create a basic container registry

az acr create --resource-group az204-acr-rg \

 --name <myContainerRegistry> --sku Basic

build the image, tagged as "v1", and pushes it to your registry

az acr build --image sample/hello-world:v1 --registry <myContainerRegistry> --file Dockerfile .

To verify the results, list the repositories in your registry:

az acr repository list --name <myContainerRegistry> --output table

and list the tags:

az acr repository show-tags --name <myContainerRegistry> \

 --repository sample/hello-world --output table

A10-8 Run container images in Azure Container Instances

https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/

Azure Container Instances (ACI) offers the fastest and simplest way to run a container in Azure. ACI is for any scenario

that can operate in isolated containers.

Benefits

• Fast start

• Easy access – expose container groups directly to the internet with an IP address and a FQDN

• Secure – Hypervisor-level security

• Confidentiality – minimum customer data is stored

• Custom sizes

• Persistent storage – mount Azure Files shares

• Cross platform – load Linux and Windows containers with same API

Multi-container Groups

The top-level resource in Azure Container Instances is the container group, a collection of containers on the same host

machine that share a lifecycle, network and storage resources. It’s similar to a Kubernetes pod. For example:

Deployment

Multi-container groups can only be deployed using ARM templates or YAML. Single containers can be deployed using the

Azure CLI as well as ARM templates or YAML.

https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/

YAML: more concise. Recommended when your deployment includes only container instances.

ARM Template: when you need to deploy more Azure service resources.

YAML template is the preferred method when deploying container groups consisting of multiple containers.

Resources are requested for the container group and divided equally among the containers.

Container groups share an IP address, and a port which must be exposed on the IP address and from the container, to

enable access from external clients.

External storage volumes can be mounted for:

• Azure file share

• Secret

• Empty directory

• Cloned git repo

Single container example

A single container can be deployed using the AZ container create CLI command.

create a resource group

az group create --name az204-aci-rg --location <myLocation>

create and start a container

az container create --resource-group az204-aci-rg \

 --name mycontainer \

 --image mcr.microsoft.com/azuredocs/aci-helloworld \

 --ports 80 \

 --dns-name-label $DNS_NAME_LABEL --location <myLocation>

You can verify the container is running with the az container show CLI command to get the FDQN, and then test it by

navigating to the FDQN from a browser.

az container show --resource-group az204-aci-rg \

 --name mycontainer \

 --query "{FQDN:ipAddress.fqdn,ProvisioningState:provisioningState}" \

 --out table

Restart policy

Container instances are billed by the second for the compute resources used while the container is executing.

Containers restart by default when their processes complete. You can override by setting a container restart policy to

one of the following

Always: This is the default setting applied when no restart policy is specified at container creation.

Never: The containers run at most once.

OnFailure: restarted only when the process terminates with a nonzero exit code. The containers are run at least once.

When creating a single container app, you can specify the restart policy as follows:

az container create \

 --resource-group myResourceGroup \

 --name mycontainer \

 --image mycontainerimage \

 --restart-policy OnFailure

When a container’s restart policy is Never or OnFailure, the container’s status is set to Terminated.

Environment variables

Environment variables can be provided when you create the container:

az container create \

 --resource-group myResourceGroup \

 --name mycontainer2 \

 --image mycontainerimage2 \

 --environment-variables 'NumWords'='5' 'MinLength'='8'

Set a secure environment variable by specifying the secureValue property instead of the regular value. Environment

variables with secure values aren't visible in your container's properties, they can be accessed only from within the

container. For example:

apiVersion: 2018-10-01

location: eastus

name: securetest

properties:

 containers:

 - name: mycontainer

 properties:

 environmentVariables:

 - name: 'NOTSECRET'

 value: 'my-exposed-value'

 - name: 'SECRET'

 secureValue: 'my-secret-value'

 image: nginx

 ports: []

 resources:

 requests:

 cpu: 1.0

 memoryInGB: 1.5

 osType: Linux

 restartPolicy: Always

tags: null

type: Microsoft.ContainerInstance/containerGroups

The YAML file can then be used to deploy the container group with the following CLI command:

az container create --resource-group myResourceGroup \

 --file secure-env.yaml

File Shares

To persist state beyond the lifetime of an ACI container, you mount a volume from an external store. You can mount an

Azure Files file share making it accessible to the container via SMB protocol. Or you can use an Azure file share with

Azure virtual machines. To mount an Azure file share as a volume, specify the share and volume mount point when you

create the container with az container create.

az container create \

 --resource-group $ACI_PERS_RESOURCE_GROUP \

 --name hellofiles \

 --image mcr.microsoft.com/azuredocs/aci-hellofiles \

 --dns-name-label aci-demo \

 --ports 80 \

 --azure-file-volume-account-name $ACI_PERS_STORAGE_ACCOUNT_NAME \

 --azure-file-volume-account-key $STORAGE_KEY \

 --azure-file-volume-share-name $ACI_PERS_SHARE_NAME \

 --azure-file-volume-mount-path /aci/logs/

You can only mount Azure Files shares to Linux containers.

To mount multiple volumes in a container instance, you must deploy using an ARM template or a YAML file. There is a

volumes array and a volume mounts array.

For example, ARM Template contains a definition of the volumes:

"volumes": [{

 "name": "myvolume1",

 "azureFile": {

 "shareName": "share1",

 "storageAccountName": "myStore",

 "storageAccountKey": "<key>"

 }

},

{

 "name": "myvolume2",

 "azureFile": {

 "shareName": "share2",

 "storageAccountName": "myStore",

 "storageAccountKey": "<key>"

 }

}]

And it contains a definition of how the container access the mount in the properties section of the container definition:

"volumeMounts": [{

 "name": "myvolume1",

 "mountPath": "/mnt/share1/"

},

{

 "name": "myvolume2",

 "mountPath": "/mnt/share2/"

}]

In this example, the volume mounts connect to the volumes at runtime using the name property, myvolume1 or

myvolume2.

A10-9 Work with Azure Cosmos DB

https://learn.microsoft.com/en-us/training/modules/work-with-cosmos-db/

A Cosmos DB account is as follows:

A database is analogous to a namespace serving as the unit of management for a set of containers. A container is a

schema-agnostic container of items. Items in the same container can have arbitrary schemas. Depending on which API

you use, an item can represent either a document in a collection, a row in a table, or a node or edge in a graph.

Microsoft .NET SDK for Azure Cosmos DB

Note: in the following code, the DatabaseResponse object contains information about the operation that resulted in the

response object that was returned.

Database example

CosmosClient client = new CosmosClient(endpoint, key);

// Create a database (if it doesn’t already exist)

DatabaseResponse databaseResponse = await client.CreateDatabaseIfNotExistsAsync(databaseId, 10000);

// Read the database you just created

Database database = client.GetDatabase(database_id);

DatabaseResponse readResponse = await database.ReadAsync();

// Delete the database when it’s no longer needed

await database.DeleteAsync();

https://learn.microsoft.com/en-us/training/modules/work-with-cosmos-db/

Container example

For this example, the database object was assumed to have previously been obtained as shown in the previous example.

// Set throughput to the minimum value of 400 RU/s

ContainerResponse simpleContainer = await database.CreateContainerIfNotExistsAsync(

 id: containerId,

 partitionKeyPath: partitionKey,

 throughput: 400);

// Read a container

Container container = database.GetContainer(containerId);

ContainerProperties containerProperties = await container.ReadContainerAsync();

// Delete a container

await database.GetContainer(containerId).DeleteContainerAsync();

Item example

// Create item

ItemResponse<SalesOrder> response = await container.CreateItemAsync(

 salesOrder,

 new PartitionKey(salesOrder.AccountNumber));

// Read item

string id = "[id]";

string accountNumber = "[acctnum]";

PartitionKey partitionKey = new PartitionKey(accountNumber);

ItemResponse<SalesOrder> response = await container.ReadItemAsync(

 id,

 partitionKey);

The Container.GetItemQueryIterator method creates a query for items under a container in an Azure Cosmos database

using a SQL statement with parameterized values. It returns a FeedIterator.

QueryDefinition query = new QueryDefinition(

 "select * from sales s where s.AccountNumber = @AccountInput ")

 .WithParameter("@AccountInput", "Account1");

FeedIterator<SalesOrder> resultSet = container.GetItemQueryIterator<SalesOrder>(

 query,

 requestOptions: new QueryRequestOptions() {PartitionKey = partitionKey});

Create Cosmos DB account with CLI

connect to Azure

az login

create a resource group

az group create --location <myLocation> --name az204-cosmos-rg

create the cosmos db account

az cosmosdb create --name <myCosmosDBacct> --resource-group az204-cosmos-rg

retrieve the access key

az cosmosdb keys list --name <myCosmosDBacct> --resource-group az204-cosmos-rg

Stored procedures, triggers, UDFs

Azure Cosmos DB supports transactional execution of JavaScript for stored procedures, triggers, and user-defined

functions (UDFs). To call a stored procedure, trigger, or user-defined function, you need to register it using the SDK. For

example in C#:

StoredProcedureResponse storedProcedureResponse = await client

.GetContainer("myDatabase", "myContainer")

.Scripts

.CreateStoredProcedureAsync(

new StoredProcedureProperties

{

 Id = "spCreateToDoItems",

 Body = File.ReadAllText($@"..\js\spCreateToDoItems.js")

}

);

Stored procedures

Stored procedures can create, update, read, query, and delete items inside a collection. They are registered per

collection, and can operate on any document present in that collection.

var helloWorldStoredProc = {

 id: "helloWorld",

 serverScript: function () {

 var context = getContext();

 var response = context.getResponse();

 response.setBody("Hello, World");

 }

}

To create an item (document), the stored procedure object has an id and a body property. The body is a function that

takes a documentToCreate object, and calls the collection’s createDocument() method passing in the

documentToCreate and a callback function that is called after the document is added. The callback function receives 2

parameters, an error object in case the operation fails, and a documentCreated object.

var createDocumentStoredProc = {

 id: "createMyDocument",

 body: function createMyDocument(documentToCreate) {

 var context = getContext();

 var collection = context.getCollection();

 var accepted = collection.createDocument(

 collection.getSelfLink(),

 documentToCreate,

 function (err, documentCreated) {

 if (err) throw new Error(err.message);

 context.getResponse().setBody(documentCreated.id)

 });

 if (!accepted) return;

 }

}

The stored procedure returns the ID of the item (document) that was created. This is done by the callback function,

which sets the ID as the context response body.

Stored procedure input parameters are received as a string even if you pass an array of strings as input. To work around

this, you parse the string as an array. For example:

function sample(arr) {

 if (typeof arr === "string") arr = JSON.parse(arr);

 arr.forEach(function(a) {

 // do something here

 console.log(a);

 });

}

Azure Cosmos DB operations must complete within a limited amount of time. This is called bounded execution. The

context collection functions all return a Boolean “accepted” value that tell you if the operation completed.

Stored procedures implement transactions using a continuation-based model, allowing your application to resume the

transaction at a new starting point, until the function finishes its entire processing workload.

Triggers and user-defined functions (UDFs)

Azure Cosmos DB supports pre-triggers and post-triggers. Pre-triggers can be used to validate the properties of an item

being created. Post triggers can be used to update metadata with details about the newly created item. Triggers don’t

receive parameters, instead they use the context object by calling the JavaScript getContext() method. The pre-trigger

uses the context to access the request body for the item to be created. The post-trigger uses the context to access the

response body for the created item.

User-defined functions are used inside a query. For example, suppose there is an “Income” container with properties:

{

 "name": "User One",

 "country": "USA",

 "income": 70000

}

Then you can create a UDF as follows:

function tax(income) {

 if (income == undefined)

 throw 'no input';

 if (income < 1000)

 return income * 0.1;

 else if (income < 10000)

 return income * 0.2;

 else

 return income * 0.4;

}

Explore change feed in Azure Cosmos DB

Change feed is a persistent record of insert and update changes to a container in the order they occur. The sorted list

can be processed in order asynchronously and incrementally, and the output can be distributed across one or more

consumers for parallel processing.

Push vs Pull

With the push model, the change feed processor pushes work to a client and the complexity in checking for work and

storing state for the last processed work is handled within the change feed processor. With the pull model, in addition to

business logic the client has to have logic for storing state for the last processed work, handling load balancing across

multiple clients processing work in parallel, and handling errors. Only use the pull model when you need additional low

level of control:

• Reading changes from a particular partition key

• Controlling the pace at which your client receives changes

• Doing a one-time read of the existing data (for example, a data migration)

There are two ways you can read from the change feed with a push model: Azure Functions Azure Cosmos DB triggers,

and the change feed processor library.

Change feed processor

Four main components:

1. The monitored source container has the data from which the change feed is generated.

2. The lease container provides state storage and coordinates processing across multiple workers.

3. A compute instance hosts the change feed processor. It has a unique identifier called the instance name.

4. The delegate is the code that defines what you want to do with each batch of changes.

Example change feed processor
private static async Task<ChangeFeedProcessor> StartChangeFeedProcessorAsync(

 CosmosClient C,

 IConfiguration configuration)

{

 ChangeFeedProcessor changeFeedProcessor =

 C.GetContainer("db-name", "monitored-source-container-name")

 .GetChangeFeedProcessorBuilder<ToDoItem>(

 processorName: "example-descriptive-processor-name",

 onChangesDelegate: myDelegateAsync)

 .WithInstanceName("compute-instance-name")

 .WithLeaseContainer(C.GetContainer("db-name", "lease-container-name"))

 .Build();

 await changeFeedProcessor.StartAsync();

 return changeFeedProcessor;

}

Example delegate
static async Task myDelegateAsync (

 ChangeFeedProcessorContext context,

 IReadOnlyCollection<ToDoItem> changes,

 CancellationToken cancellationToken)

{

 foreach (ToDoItem item in changes)

 {

 // Simulate some asynchronous operation

 await Task.Delay(10);

 }

}

A10-10 Consume an Azure Cosmos DB for NoSQL change feed using the SDK

https://learn.microsoft.com/en-us/training/modules/consume-azure-cosmos-db-sql-api-change-feed-use-sdk/

Change Feed Delegates

In C#, a delegate is a special type of variable or member that references a method with a specific parameter list and

return type. The handler passed into the change feed processor can be declared as follows:

static async Task HandleChangesAsync(

 IReadOnlyCollection<Product> changes,

 CancellationToken cancellationToken

)

{

 foreach(Product product in changes)

 {

 // Do something with each change

 }

}

This can be assigned to a variable:

ChangesHandler<Product> changeHandlerDelegate = HandleChangesAsync;

and passed to the change feed processor. For example:

var myBuilder = myContainer.GetChangeFeedProcessorBuilder<Product>(

 processorName: "example",

 onChangesDelegate: changeHandlerDelegate);

Or using a more concise syntax with an anonymous function:

ChangesHandler<Product> changeHandlerDelegate = async (

 IReadOnlyCollection<Product> changes,

 CancellationToken cancellationToken

) => {

 foreach(Product product in changes)

 {

 // Do something with each change

 }

};

And then passed to the change feed processor as before.

Change Feed Processor

The change feed processor is created as follows:

1. Get the processor builder from the monitored (source) container variable

https://learn.microsoft.com/en-us/training/modules/consume-azure-cosmos-db-sql-api-change-feed-use-sdk/

2. Use the builder to build-out the processor by specifying the delegate, processor name, lease container, and host

instance name

3. Start the processor

Simple example:

Container sourceContainer = client.GetContainer("myMonitoredSourceContainer", "products");

Container leaseContainer = client.GetContainer("myLeaseContainer", "productslease");

var builder = sourceContainer.GetChangeFeedProcessorBuilder<Product>(

 processorName: "productItemProcessor",

 onChangesDelegate: changeHandlerDelegate

);

ChangeFeedProcessor processor = builder

 .WithInstanceName("desktopApplication")

 .WithLeaseContainer(leaseContainer)

 .Build();

await processor.StartAsync();

// Wait while processor handles items

await processor.StopAsync();

Change Feed Estimator

Identifying if your change feed solution needs to scale out requires an estimator. The change feed estimator is a sidecar

feature to the processor that measures the number of changes that are pending to be read by the processor at any point

in time.

For example:

Container sourceContainer = client.GetContainer("myMonitoredSourceContainer", "products");

Container leaseContainer = client.GetContainer("myLeaseContainer", "productslease");

// a processor is created

ChangeFeedProcessor processor = sourceContainer

 .GetChangeFeedProcessorBuilder<Product>(

 processorName: "productItemProcessor",

 onChangesDelegate: changeHandlerDelegate)

 .WithInstanceName("desktopApplication")

 .WithLeaseContainer(leaseContainer)

 .Build();

// implement a delegate to do estimation using the type ChangesEstimationHandler to handle each time

// the estimator polls the change feed to see how many changes have not been processed yet.

ChangesEstimationHandler changeEstimationDelegate = async (

 long estimation,

 CancellationToken cancellationToken

) => {

 // Do something with the estimation

};

// build the estimator in a manner similar to the processor reusing the same lease container

ChangeFeedProcessor estimator = sourceContainer

 .GetChangeFeedEstimatorBuilder(

 processorName: "productItemEstimator",

 estimationDelegate: changeEstimationDelegate)

 .WithLeaseContainer(leaseContainer)

 .Build();

// start everything up

await processor.StartAsync();

A10 REFERENCES
• Application-scope changes

https://learn.microsoft.com/en-us/azure/container-apps/revisions#application-scope-changes

• az containerapp

https://learn.microsoft.com/en-us/cli/azure/containerapp

• Azure Key Vault availability and redundancy

https://learn.microsoft.com/en-us/azure/key-vault/general/disaster-recovery-guidance

• Azure Key Vault developer's guide

https://learn.microsoft.com/en-us/azure/key-vault/general/developers-guide

• Consume an Azure Cosmos DB for NoSQL change feed using the SDK

https://learn.microsoft.com/en-us/training/modules/consume-azure-cosmos-db-sql-api-change-feed-use-sdk/

• Dapr

https://docs.dapr.io/concepts/overview/

• Dapr tutorial

https://learn.microsoft.com/en-us/azure/container-apps/microservices-dapr

• Develop Azure Functions

https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/

• Docker build reference

https://docs.docker.com/engine/reference/commandline/build/

• Docker run reference (CLI)

https://docs.docker.com/engine/reference/run/

• Explore Azure Functions

https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/

• Implement Azure App Configuration

https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/

• Implement Azure Container Apps

https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/

• Implement Azure Key Vault

https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/

• Manage container images in Azure Container Registry

https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/

• Microsoft.App containerApps

https://learn.microsoft.com/en-us/azure/templates/microsoft.app/containerapps?pivots=deployment-

language-bicep

• Monitor app performance

https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/

• Revision-scope changes

https://learn.microsoft.com/en-us/azure/container-apps/revisions#revision-scope-changes

• Run container images in Azure Container Instances

https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/

• Service tier features and limits

https://learn.microsoft.com/en-us/azure/container-registry/container-registry-skus#service-tier-features-and-

limits

• What is Bicep?

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep

• Work with Azure Cosmos DB

https://learn.microsoft.com/en-us/training/modules/work-with-cosmos-db/

https://learn.microsoft.com/en-us/azure/container-apps/revisions#application-scope-changes
https://learn.microsoft.com/en-us/cli/azure/containerapp
https://learn.microsoft.com/en-us/azure/key-vault/general/disaster-recovery-guidance
https://learn.microsoft.com/en-us/azure/key-vault/general/developers-guide
https://learn.microsoft.com/en-us/training/modules/consume-azure-cosmos-db-sql-api-change-feed-use-sdk/
https://docs.dapr.io/concepts/overview/
https://learn.microsoft.com/en-us/azure/container-apps/microservices-dapr
https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/run/
https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/
https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/
https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/
https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/
https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/
https://learn.microsoft.com/en-us/azure/templates/microsoft.app/containerapps?pivots=deployment-language-bicep
https://learn.microsoft.com/en-us/azure/templates/microsoft.app/containerapps?pivots=deployment-language-bicep
https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/
https://learn.microsoft.com/en-us/azure/container-apps/revisions#revision-scope-changes
https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-skus#service-tier-features-and-limits
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-skus#service-tier-features-and-limits
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep
https://learn.microsoft.com/en-us/training/modules/work-with-cosmos-db/

Appendix 11 – Study Notes for 2025 Renewal

After achieving Azure developer certification, you must renew it every year by taking a renewal exam.

This appendix contains my 2025 renewal exam study notes.

Skills measured in renewal assessment:

• Explore Azure Functions

• Develop Azure Functions

• Implement Azure Key Vault

• Implement Azure App Configuration

• Monitor app performance

• Implement Azure Container Apps

• Manage container images in Azure Container Registry

• Run container images in Azure Container Instances

• Develop for Azure Cache for Redis

Microsoft Learn:

• Renewal for Microsoft Certified: Azure Developer Associate - 2025

• Explore Azure Functions

• Develop Azure Functions

• Implement Azure Key Vault

• Implement Azure App Configuration

• Monitor app performance

• Implement Azure Container Apps

• Manage container images in Azure Container Registry

• Run container images in Azure Container Instances

• Develop for Azure Cache for Redis

https://learn.microsoft.com/en-us/credentials/certifications/azure-developer/renew/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl
https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection
https://learn.microsoft.com/en-us/training/modules/develop-for-azure-cache-for-redis/?wt.mc_id=certnurture_StayCurrent6MonthReminder_email_wwl&ns-enrollment-type=Collection

A11-1 Explore Azure Functions

https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/

Azure Functions is an integration and automation service for solving integration problems and automating business

processes. They can define inputs, actions, conditions (triggers), and outputs.

Hosting options (plans)

There are 5 hosting options:

• consumption plan,

• flex consumption plan,

• premium plan,

• dedicated plan,

• container apps plan.

See A11-10 Pricing Plans and Tiers for details.

Function app timeout duration

The FunctionTimeout property in the host.json project file specifies the timeout duration. After the trigger starts

function execution, the function needs to return/respond within the timeout duration.

plan default timeout maximum timeout

consumption plan 5 minutes 10 minutes

all other plans 30 minutes unlimited

Regardless of the function app timeout setting, 230 seconds is the maximum amount of time that an HTTP triggered

function can take to respond to a request. OS patching and scale in behaviors can still cancel function executions.

Storage Account

On any plan, a function app requires a general Azure Storage account, which supports Azure Blob, Queue, Files, and

Table storage. Function code files are stored on Azure Files shares on the function's main storage account. When you

delete the main storage account of the function app, the function code files are deleted and can't be recovered.

Compare Functions and Logic Apps

Both Functions and Logic Apps are Azure Services that enable serverless workloads. Azure Functions is a serverless

compute service, whereas Azure Logic Apps is a serverless workflow integration platform. Both can create complex

orchestrations, a set of steps, or actions, to accomplish a complex task.

https://learn.microsoft.com/en-us/training/modules/explore-azure-functions/

 Azure Functions Logic Apps

Development Code-first (imperative) Designer-first (declarative)

Connectivity About a dozen built-in binding types,

write code for custom bindings

Large collection of connectors,

Enterprise Integration Pack for B2B

scenarios, build custom connectors

Actions Each activity is an Azure function; write

code for activity functions

Large collection of ready-made actions

Monitoring Azure Application Insights Azure portal, Azure Monitor logs

Management REST API, Visual Studio Azure portal, REST API, PowerShell,

Visual Studio

Execution context Runs in Azure, or locally Runs in Azure, locally, or on premises

Compare Functions and WebJobs

Both are built on Azure App Service and support features such as source control integration, authentication, and

monitoring with Application Insights integration. Azure Functions is built on the WebJobs SDK, so it shares many of the

same event triggers and connections to other Azure services. Azure Functions offers more developer productivity than

Azure App Service WebJobs does. It also offers more options for programming languages, development environments,

Azure service integration, and pricing. For most scenarios, it's the best choice.

Scaling

The Consumption, Premium, and Container App plans use event driven scaling. The Flex Consumption plan uses per

function scaling. The Dedicated plan uses manual/autoscaling (see A11-10 Pricing Plans and Tiers for Function app

scaling by plan).

Scale Controller

A component called the scale controller is used to monitor the rate of events and determine whether to scale out or

scale in based on heuristics for each trigger type.

Other Scaling behaviors
• A single instance may process more than one request at a time, so no set limit on number of concurrent executions.

• You can specify a lower maximum for a specific app by modifying the functionAppScaleLimit value.

A11-2 Develop Azure Functions

https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/

Local project files

A Functions project root directory contains host.json, local.settings.json, other files depending on language. The

host.json metadata file contains configuration options that affect all functions in a function app instance. The

local.settings.json file stores app settings, and settings used by local development tools.

A function contains two important pieces - your code, and some config, the function.json file. The function.json file

defines the function's trigger, bindings, and other configuration settings. The bindings property is where you configure

both triggers and bindings. Every binding requires the following settings:

• type: Type of binding. For example, queueTrigger.

• direction: Receiving data into the function or sending data from the function.

• name: The name that is used for the bound data in the function. For example, myQueue.

A function app provides an execution context in which your functions run. It's the unit of deployment and management

for your functions, so that your functions can be managed, deployed, and scaled together.

The code for all the functions in a specific function app is located in a root project folder that contains a host

configuration file, host.json, that contains runtime-specific configurations. A bin folder contains packages and other

library files that the function app requires. Specific folder structures required by the function app depend on language.

Example trigger and binding

Suppose you want to write a new row to Azure Table storage whenever a new message appears in Azure Queue storage.

This scenario can be implemented using an Azure Queue storage trigger and an Azure Table storage output binding.

Here’s a function.json file for this scenario:

{

 "disabled":false,

 "bindings": [

 {

 "type": "queueTrigger",

 "direction": "in",

 "name": "order",

 "queueName": "myqueue-items",

 "connection": "MY_STORAGE_ACCT_APP_SETTING"

 },

 {

 "type": "Table",

 "direction": "out",

 "name": "$return",

 "tableName": "outTable",

 "connection": "MY_TABLE_STORAGE_ACCT_APP_SETTING"

 }

]

}

In this example, for the input binding, the name property identifies a function parameter, in this case the function is

required to have a parameter named “order”. For the output binding, the name parameter specifies how the function

provides the output value, in this case by using the function return value. The connection property is set to the name of

an application setting that holds the connection string, instead of the connection string itself.

https://learn.microsoft.com/en-us/training/modules/develop-azure-functions/

JavaScript example to implement the above function.json:

module.exports = async function (context, order) {

 order.PartitionKey = "Orders";

 order.RowKey = Math.random().toString();

 context.bindings.order = order;

};

C# script example:

public static Person Run(JObject order, ILogger log)

{

 return new Person() {

 PartitionKey = "Orders",

 RowKey = Guid.NewGuid().ToString(),

 Lastname = order["Lastname"].ToString(),

}

public class Person

{

 public string PartitionKey { get; set; }

 public string RowKey { get; set; }

 public string Lastname { get; set; }

}

In a C# class library, the same trigger and binding information is provided by attributes instead of a function.json file:

public static class QueueToTableExample

{

 [FunctionName("QueueToTableExample")]

 [return: Table("outTable", Connection = "MY_TABLE_STORAGE_ACCT_APP_SETTING")]

 public static Person Run(

 [QueueTrigger("myqueue-items", Connection = "MY_STORAGE_ACCT_APP_SETTING")]JObject order,

 ILogger log)

 {

 return new Person() {

 PartitionKey = "Orders",

 RowKey = Guid.NewGuid().ToString(),

 Lastname = order["Lastname"].ToString(),

 }

}

public class Person

{

 public string PartitionKey { get; set; }

 public string RowKey { get; set; }

 public string Lastname { get; set; }

}

Triggers and bindings

Triggers and bindings let you avoid hardcoding access to other services. Triggers have associated data, which is often

provided as the payload of the function. Data from bindings is provided to the function as parameters.

In compiled languages such as C# class libraries and Java, triggers and bindings are defined by decorating methods and

parameters with attributes or annotations. The parameter type defines the data type for input data. Use a custom type

to de-serialize to an object. Binding directions are inferred from the parameter type.

In scripting languages such as C# script and JavaScript, triggers and bindings are defined by updating function.json and

can be edited in the portal. For their data types, use the dataType property in the function.json file:

{

 "dataType": "binary",

 "type": "httpTrigger",

 "name": "req",

 "direction": "in"

}

Connect Functions to Azure services

As a security best practice, Azure Functions uses application settings to store secrets required to connect to other

services; alternatively, some connections use a managed identity instead of a secret.

See A11-11 Authentication and authorization notes for details.

A11-3 Implement Azure Key Vault

https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/

Azure Key Vault is used to manage:

Secrets anything that you want to tightly control access to such as tokens,

passwords, certificates, API keys, and other secrets

Keys Create and control encryption keys

Certificates Provision, manage, and deploy public and private SSL/TLS certificates

for Azure and internal connected resources

A vault is logical group of secrets.

Azure Key Vault supports two types of containers:

Vaults keys, secrets, certificates Software, HSM backed pools

Managed HSM pools keys HSM backed pools

 (HSM=Hardware Security Module)

Tiers

Standard encrypts with a software key

Premium encrypts with a software key, or HSM-protected keys

Benefits

Centralized application secrets, accessed using URIs. URIs allow the applications to retrieve specific versions of a secret.

Securely store secrets and keys (see A11-11 Authentication and authorization notes for details).

Monitor access and use by enabling logging for your vaults.

Logs can be:

• archived to a storage account,

• streamed to an event hub,

• or sent to Azure Monitor logs.

Simplified administration (security, life cycle, high availability):

• Removing the need for in-house knowledge of HSM.

• Scaling up on short notice to meet usage spikes.

• Replicating contents within a region and to a secondary region, for failover and high availability.

https://learn.microsoft.com/en-us/training/modules/implement-azure-key-vault/

• Standardize administration via the portal, Azure CLI and PowerShell

• Automating tasks on certificates from Public CAs such as enrollment and renewal.

Encryption of data in transit

Data travelling between Key Vault and clients is protected by TLS. Connections between clients and Microsoft cloud

services are also protected by PFS (Perfect Forward Security) and RSA-based 2,048-bit encryption.

Authentication

Authentication with Key Vault works with Microsoft Entra ID, which is responsible for authenticating the identity of any

given security principal (see A11-11 Authentication and authorization notes for details).

Versioning

When a key vault object is first created, it's marked as the current version of that object. Creation of a new instance with

the same name, creates a new instance of the object, and causes the new instance to become the current version.

Best Practices

• Use separate key vaults per application per environment.

• Secure access to your key vaults by allowing only authorized applications and users and by following the

principle of least privilege.

• Create regular backups of your vault.

• Turn on logging and alerts.

• Turn on soft-delete and purge protection to guard against accidental or force deletion of the secret.

A11-4 Implement Azure App Configuration

https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/

Azure App Configuration is a service to centrally manage application settings and feature flags. Benefits include:

• centralized management for different environments and geographies;

• tagging with labels;

• point-in-time replay of settings;

• comparison of two sets of configurations on custom-defined dimensions;

• encryption of sensitive information at rest and in transit;

The easiest way to access an App Configuration store from your application is through an App Configuration provider

client library that Microsoft provides such as App Configuration provider for .NET/Spring Cloud/JavaScript/Python. Other

languages can use the App Configuration REST API.

Azure App Configuration Pricing Tiers

3 pricing tiers: free, standard, premium (see A11-10 Pricing Plans and Tiers for details).

Point-in-time key-values

Azure App Configuration maintains a record that provides a timeline of key-value changes. You can reconstruct the

history of any key and provide its past value at any moment within the key history period allowing you to “time-travel”

backward and retrieve an old key-value. For example, you can recover configuration settings in order to roll back the

application to the previous configuration.

Keys

Keys serve as the name for key-value pairs. Keys stored in App Configuration are case-sensitive, unicode-based strings.

The keys app1 and App1 are distinct. Use any unicode character in key names entered into App Configuration except for

*, comma, and \. If you need to include a reserved character, you must escape it by using a backslash '\'.

There's a combined size limit of 10,000 characters on a key-value pair including the key, its value, and all associated

optional attributes. You can organize keys into a hierarchical namespace by using a character delimiter, such as / or : .

Use a convention that's best suited for your application. App Configuration treats keys as a whole. It doesn't parse keys

to figure out how their names are structured or enforce any rule on them. It’s similar to how an Azure App Service web

app settings are configured. For example: AppName:Service1:ApiEndpoint

Design key namespaces

Two general approaches to naming keys are flat or hierarchical. These methods are similar from an application usage

standpoint, but hierarchical naming offers many advantages: easier to read, easier to manage, easier to use.

Key Labels

Key values can optionally have a label attribute to differentiate key values with the same key. Common uses of labels are

to specify multiple environments, and managing versioning. By default, the label is empty, or null. To explicitly reference

a key-value without a label, use \0 (URL encoded as %00). For example: Key = AppName:DbEndpoint & Label = Test

Values

Values can use all unicode characters. There's an optional user-defined content type attribute associated with each value

that can be used to store application specific information about the value, for example its encoding scheme.

https://learn.microsoft.com/en-us/training/modules/implement-azure-app-configuration/

Features Flags

Feature management decouples feature release from code deployment enabling quick changes to feature availability.

Terminology:

feature flag Variable with a state of on or off and an associated code block. The state triggers

whether the code block runs.

feature manager An application package that handles the lifecycle of the feature flags in an application.

filter A rule for evaluating the state of a feature flag. Can be based on things like a user group,

a device or browser type, a geographic location, a time window, etc.

Effective management of features typically consists of:

• An application that makes use of feature flags.

• A separate repository that stores the feature flags and their current states.

From C# code, declare feature flags as boolean variables:

bool featureFlag = true;

if (featureFlag) {

 // code will run if the featureFlag is true

} else {

 // code will run if the featureFlag is false

}

Feature flag declarations have two parts: a name and a list of one or more filters. The feature manager supports

appsettings.json as a configuration source for feature flags:

"FeatureManagement": {

 "FeatureA": true, // Feature flag set to on

 "FeatureB": false, // Feature flag set to off

 "FeatureC": {

 "EnabledFor": [

 {

 "Name": "Percentage",

 "Parameters": {

 "Value": 50

 }

 }

]

 }

}

When a feature flag has multiple filters, the filter list is traversed in order until one of the filters determines the feature

should be enabled. At that point, the feature flag is on, and any remaining filter results are skipped. If no filter indicates

the feature should be enabled, the feature flag is off.

You should externalize all the feature flags used in an application allowing you to change feature flag states without

modifying the application itself. Azure App Configuration is a centralized repository for feature flags. You use the App

Configuration libraries for various programming language frameworks to easily access these feature flags from your

application.

Secure app configuration

Every App Configuration instance has its own encryption key managed by the service and used to encrypt sensitive

information. By default, Azure App Configuration encrypts sensitive information at rest using a 256-bit AES encryption

key provided by Microsoft. Alternatively, customer-managed key capability can be enabled.

Azure App Configuration encrypts data in transit using Transport Layer Security (TLS).

Configuration data is encrypted at rest and in transit, but it isn’t a replacement for Key Vault. Don’t store secrets in it.

Customer managed keys

When customer-managed key capability is enabled, App Configuration uses a managed identity to authenticate with

Microsoft Entra ID, to call Azure Key Vault and wrap the App Configuration instance's encryption key for one hour. The

encryption key is cached within App Configuration for one hour.

The following components are required to successfully enable the customer-managed key capability

• Standard tier Azure App Configuration instance

• Azure Key Vault with soft-delete and purge-protection features enabled

• An RSA or RSA-HSM key within the Key Vault

To allow Azure App Configuration to use the Key Vault key:

3. Assign a managed identity to the Azure App Configuration instance

4. Grant the identity GET, WRAP, and UNWRAP permissions in the target Key Vault's access policy.

Private endpoints

Private endpoints for Azure App Configuration allow clients on a VNet to securely access data over a private link. The

private endpoint uses an IP address from the VNet address space for your App Configuration store, creating a private

link using the Microsoft backbone network, eliminating exposure to the public internet. This enables you to securely

connect to the App Configuration store from on-premises networks that connect to the virtual network using VPN or

ExpressRoutes with private-peering.

Managed identities

A managed identity from Microsoft Entra ID allows Azure App Configuration to access other Microsoft Entra ID-

protected resources, such as Azure Key Vault (see A11-11 Authentication and authorization notes for details).

A11-5 Monitor app Performance

https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/

Application Insights

Azure Application Insights displays data about your application in a Microsoft Azure resource. To add telemetry to your

bot, you need an Azure subscription and an Application Insights resource created for your bot. From this resource, you

can obtain the three keys to configure your bot:

• Instrumentation key

• Application ID

• API key

Azure Application Insights provides Application Performance Monitoring (APM) by collecting events such as metrics and

application Telemetry data, which describe application activities and health, as well as trace logging data. Trace logging

only requires a destination for the logs; the logging framework rarely needs to be changed.

Application Insights main features:

• Live Metrics, observe activity in real time with no effect on the host environment.

• Availability (Synthetic Transaction Monitoring), probe external endpoints to test availability over time.

• GitHub or Azure DevOps integration, work items in context of Application Insights.

• Usage, which features are popular how users interact with your application.

• Smart Detection, Automatic anomaly detection through proactive telemetry analysis.

• Application Map, high level view of the application architecture, component health and responsiveness.

• Distributed Tracing, end-to-end flow of execution.

Application Insights monitors:

• Request rates, response times, and failure rates. Which pages are most popular?

• Dependency rates, response times, and failure rates. Find out whether external services are slowing you down?

• Exceptions – analyze aggregated statistics, or specific instance stack traces and related requests.

• Page views and load performance from users' browsers.

• AJAX calls – rates, response times, and failure rates.

• User and session counts – statistics.

• Performance counters such as CPU, memory, and network usage from the server.

• Host diagnostics from Docker or Azure.

• Diagnostic trace logs from your app – correlate trace events with requests.

• Custom events and metrics that you write yourself in the client or server code

Metrics

Metrics are observed activity from your deployed application in real time with no effect on the host environment. Use

the namespace selector to switch between log-based and standard metrics in metrics explorer. The Application Insights

https://learn.microsoft.com/en-us/training/modules/monitor-app-performance/

user experience calls pre-aggregated metrics "Standard metrics (preview)", while the metrics from the events are called

"Log-based metrics".

Log-based metrics

The log-based metrics have more dimensions, which makes them the superior option for data analysis and ad-hoc

diagnostics. Developers can send events manually by writing code, or they can rely on the automatic collection of events

from auto-instrumentation. Application Insights stores all collected events as logs.

For situations when the volume of events is too high, Application Insights implements telemetry volume reduction

techniques. Unfortunately, lowering the number of stored events also lowers the accuracy of the metrics.

Standard metrics (pre-aggregated)

The standard metrics aren't stored as individual events, but rather as pre-aggregated time series enabling near real-time

alerting. The newer SDKs pre-aggregate metrics during collection, resulting in less data ingestion and lower cost, and

accuracy isn't affected by sampling or filtering. With older SDKs that don't pre-aggregate metrics during collection, you

don't benefit from the reduced volume of data transmitted over the wire, but you can still experience better

performance because the collection endpoint pre-aggregates events before ingestion sampling.

Instrument app for monitoring

"instrumenting" is simply enabling an application to capture telemetry

• Autoinstrumentation

• Manual instrumentation

Auto-instrumentation is the preferred instrumentation method. It requires no developer investment. It's also the only

way to instrument an application in which you don't have access to the source code. But it’s less configurable, and It's

not available in all languages.

Use manual instrumentation if:

• You require custom events and metrics

• You require control over the flow of telemetry

• Autoinstrumentation isn't available

There are two options for manual instrumentation:

• Application Insights SDKs

• OpenTelemetry

To use the Application Insights SDK, you install a small instrumentation package in your app, and then instrument the

app from code. The instrumentation monitors your app and directs the telemetry data to an Application Insights

resource using a unique token. The app and its components don't have to be hosted in Azure.

Microsoft worked with stakeholders from previous open-source telemetry projects to create OpenTelemetry, which

includes contributions from all major cloud and Application Performance Management (APM) vendors within the Cloud

Native Computing Foundation (CNCF).

Custom Telemetry

Application Insights can be used to send telemetry from your web application so that you can analyze the performance

and usage of your application.

Application Insights provides three data types for custom telemetry:

• Trace: implement diagnostics logging with printf-style trace statements that can be text-searched;

• Event: capture user interaction with your service to analyze usage patterns; can be passed custom properties

like an order number, that represent business telemetry;

• Metric: used to report periodic scalar measurements: can be either a single measurement or pre-aggregated

metric;

Availability tests

Probe your applications external endpoint(s) to test the overall availability and responsiveness over time. You can set up

availability tests for any HTTP or HTTPS endpoint that's accessible from the public internet. Application Insights sends

web requests to your application at regular intervals from points around the world. It can alert you if your application

isn't responding or responds too slowly. You can create up to 100 availability tests per Application Insights resource. You

don't have to make any changes to the website, and it doesn't even have to be a site that you own, so you can test other

sites that your site depends on.

There are three types of availability tests:

• URL ping test (deprecated – will be retired in 2026)

• Standard test, checks the availability of a website by sending a single request, similar to ping test, and also

includes TLS/SSL certificate check, HTTP request verb, common headers, and other custom request data.

• Custom TrackAvailability test (previously called multi-step test) is the long term supported solution for multi

request or authentication test scenarios. It can be run using the .NET TrackAvailability() method from the

TelemetryClient C# class.

Application Map

Application Map is a high-level top-down view of the application architecture, component health and responsiveness. It

helps you spot problems across all components of your distributed application. Components are independently

deployable parts of your application. Components run on any number of server/role/container instances. Components

can be separate Application Insights instrumentation keys (even if subscriptions are different) or different roles

reporting to a single Application Insights instrumentation key. The preview map experience shows the components

regardless of their configuration. In addition to components, you can view external dependencies such as SQL, Event

Hubs, etc.

The app map finds components by following HTTP dependency calls made between servers with the Application Insights

SDK installed. When you first load the application map, a set of queries is triggered to discover the components related

to this component. A button at the top-left corner updates with the number of components in your application as

they're discovered. If all of the components are within a single Application Insights resource, then this discovery step

isn't required. One of the key objectives with this experience is to be able to visualize complex topologies with hundreds

of components. Click on any component to see related insights and go to the performance and failure triage experience

for that component. Application Map uses the cloud role name property to identify the components on the map. You

can manually set or override the cloud role name and change what gets displayed.

Here is an example of an application map:

A11-6 Implement Azure Container Apps

https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/

Azure App Containers is a service to run containerized applications such as microservices on a serverless platform that

runs on top of Azure Kubernetes Service. Azure Container Apps manage Kubernetes and container orchestration for you.

Azure Container Apps supports any Linux-based container image. There's no required base container image, and if a

container crashes it automatically restarts.

Deploy container apps to the same environment in order to:

• Manage related services

• Deploy different applications to the same virtual network

• Instrument applications that communicate via Dapr

• Have applications to share the same Dapr configuration

• Have applications share the same log analytics workspace

Deploy container apps to different environments in order to:

• applications never share the same compute resources

• applications don't communicate via Dapr

The top-level resource used by Azure Container Apps for grouping containers is the Environment, which acts as a secure

boundary around groups of container apps. The resource hierarchy is as follows:

Scaling

Applications built on Azure Container Apps can dynamically scale based on: HTTP traffic, event-driven processing, CPU or

memory load, and any KEDA-supported scaler.

https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/

Configuration

Below is an example of the containers array in a container app resource template. The excerpt shows some of the

available configuration options when setting up a container when using ARM templates. Changes to the template,

trigger a new container app revision.

"containers": [

 {

 "name": "main",

 "image": "[parameters('container_image')]",

 "env": [

 {

 "name": "HTTP_PORT",

 "value": "80"

 },

 {

 "name": "SECRET_VAL",

 "secretRef": "mysecret"

 }

],

 "resources": {

 "cpu": 0.5,

 "memory": "1Gi"

 },

 "volumeMounts": [

 {

 "mountPath": "/myfiles",

 "volumeName": "azure-files-volume"

 }

]

// file is truncated for brevity

Creating and deploying a container app

First prepare the CLI development environment.

Step 1. Install the Azure Container Apps extension for the CLI.

az extension add \

 --name containerapp –upgrade

Step 2. Register the Microsoft.App namespace.

az provider register \

 --namespace Microsoft.App

Step 3. Register the Microsoft.OperationalInsights provider for

the Azure Monitor Log Analytics workspace.

az provider register \

 --namespace Microsoft.OperationalInsights

Then create resource group, container app environment, and the container app.

Step 4. Create resource group

az group create \

 --name $myRG \

 --location $myLocation

Step 5. Create environment

az containerapp env create \

 --name $myAppContEnv \

 --resource-group $myRG \

 --location $myLocation

Step 6. Create the container app and deploy a container image to it.

By setting --ingress to external, you make the container app

available to public requests. The –-query argument causes

the command to return a link to access your app

az containerapp create \

 --name my-container-app \

 --resource-group $myRG \

 --environment $myAppContEnv \

 --image mcr.microsoft.com/azuredocs/containerapps-helloworld:latest \

 --target-port 80 \

 --ingress 'external' \

 --query properties.configuration.ingress.fqdn

Multiple containers

You can define multiple containers in a single container app to implement the sidecar pattern. The sidecar pattern is

where the sidecar application is attached to a parent application and provides supporting features. They share hard disk

and network resources and experience the same application lifecycle. To run multiple containers in a container app, add

more than one container in the containers array of the container app template.

Examples of sidecar containers include:

• An agent that reads logs from the primary app container and forwards them to a logging service.

• A background process that refreshes a cache used by the primary app container.

Note: Running multiple containers in a single container app is an advanced use case. In most situations, deploy each

service as a separate container app.

Container registries

You can deploy images hosted on private registries by providing credentials in the ARM template’s

properties.configuration, registries array:

{

 ...

 "registries": [{

 "server": "docker.io",

 "username": "my-registry-user-name",

 "passwordSecretRef": "my-password-secret-name"

 }]

}

Limitations on containers

• Privileged containers: Azure Container Apps can't run a process in a container that requires root access, the

container experiences a runtime error.

• Operating system: Linux/amd64 container images.

Authentication and authorization

Azure Container Apps provides built-in authentication and authorization, providing out-of-the-box authentication with

federated identity providers. The authentication and authorization middleware component runs as a sidecar container in

your application.

See A11-11 Authentication and authorization notes for details.

Revisions

Azure Container Apps implements versioning by creating revisions. A revision is an immutable snapshot of a container

app version. New revisions are created when you update your application with revision-scope changes. A revision-scope

change is any change to the parameters in the properties.template section of the container app resource template. You

can control which revisions are active, and the external traffic that is routed to each active revision.

Revision names are used to identify a revision, and in the revision's URL. You can customize the revision name by setting

the revision suffix. You can set the revision suffix:

• in the ARM template,

• through the Azure CLI az containerapp create and az containerapp update commands,

• or when creating a revision via the Azure portal.

With the az containerapp update command you can modify environment variables, compute resources, scale

parameters, and deploy a different image. If your container app update includes revision-scope changes, a new revision

is generated.

You can list all revisions associated with your container app with the az containerapp revision list command.

Secrets

Container Apps doesn't support Azure Key Vault integration. Instead, enable managed identity in the container app and

use the Key Vault SDK in your app to access secrets.

Once secrets are defined at the application level, secured values are available to container apps.

• Secrets are scoped to an application, outside of any specific revision of the application.

• Adding, removing, or changing secrets doesn't generate new revisions.

• Each application revision can reference one or more secrets.

• Multiple revisions can reference the same secret(s).

Changing a secret doesn't automatically affect existing app revisions. When a secret changes, you can:

• Deploy a new revision.

• Restart an existing revision.

Before you delete a secret, deploy a new revision that no longer references the old secret. Then deactivate all revisions

that reference the secret.

Defining secrets

When you create a container app, secrets are defined using the --secrets parameter with a space-delimited set of

name/value pairs. For example:

az containerapp create \

 --resource-group "my-resource-group" \

 --name queuereader \

 --environment "my-environment-name" \

 --image demos/queuereader:v1 \

 --secrets "queue-connection-string=$CONNECTION_STRING"

In this example, the local computer’s CONNECTION_STRING environment variable is used to create a secret called

queue-connection-string.

You can also set environment variables within the container to the value of a secret. Set its value to secretref:, followed

by the name of the secret.

az containerapp create \

 --resource-group "my-resource-group" \

 --name myQueueApp \

 --environment "my-environment-name" \

 --image demos/myQueueApp:v1 \

 --secrets "queue-connection-string=$CONNECTIONSTRING" \

 --env-vars "QueueName=myqueue" "ConnectionString=secretref:queue-connection-string"

Microservices

Microservice architectures allow you to independently develop, upgrade, version, and scale core areas of functionality in

an overall system. deploying microservices to Azure Container Apps provides:

• Independent scaling, versioning, and upgrades

• Service discovery

• Native Dapr integration

Dapr

When you implement a system composed of microservices, function calls are spread across the network. The Distributed

Application Runtime (Dapr) provides a rich microservices programming model to support the distributed nature of

microservices. Dapr is a set of incrementally adoptable features that simplify the authoring of distributed, microservice-

based applications. Dapr enables reliable and secure application intercommunication.

Dapr is an open source software (OSS), Cloud Native Computing Foundation (CNCF) project. So that you don’t have to

manage the OSS project yourself, the Container Apps platform:

• managed and supported Dapr integration;

• Dapr version upgrades seamlessly;

• simplified Dapr interaction model to increase developer productivity.

Dapr APIs

The following Dapr example is based on the Pub/sub API:

Label Description

1 Dapr is enabled at the container app level by configuring a set of Dapr arguments.

2 The fully managed Dapr APIs are exposed to each container app through a Dapr sidecar.

3 Dapr component configuration – Dapr components can be shared across multiple container apps.

Azure Container Apps provides three channels to configure Dapr:

• Container Apps CLI

• Infrastructure as Code (IaC) templates, Bicep or ARM

• The Azure portal

By default, all Dapr-enabled container apps within the same environment load the full set of deployed components. To

ensure components are loaded at runtime by only the appropriate container apps, application-scopes should be used.

Terms:

A/B testing: at its most basic, is a way to compare two versions of something to figure out which performs better.

– https://hbr.org/2017/06/a-refresher-on-ab-testing

https://hbr.org/2017/06/a-refresher-on-ab-testing

Blue/Green deployment: is an application release model that gradually transfers user traffic from a previous version of

an app or microservice to a nearly identical new release—both of which are running in production.

– https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment

Change types – Application-scope and Revision-scope: Container app scope changes are changes to the container app

resource template (the ARM template).

• Application-scope changes are any change to the parameters in the properties.configuration section.

• Revision-scope changes are any change to the parameters in the properties.template section.

– https://learn.microsoft.com/en-us/azure/container-apps/revisions

KEDA: Kubernetes Event-driven Autoscaler

Service discovery: the process of automatically detecting devices and services on a computer network. It aims to reduce

the manual configuration effort required from users and administrators. A service discovery protocol (SDP) is a network

protocol that helps accomplish service discovery.

– https://en.wikipedia.org/wiki/Service_discovery

Ingress configuration: the settings that control how external traffic reaches your containerized application without

needing to manually set up load balancers or public IP addresses; essentially acting as a gateway to your container app

within the Azure environment.

https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment
https://learn.microsoft.com/en-us/azure/container-apps/revisions
https://en.wikipedia.org/wiki/Service_discovery

A11-7 Manage container images in Azure Container Registry

https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/

Azure Container Registry (ACR) is a managed, private Docker registry service, to store and manage your container

images and related artifacts. A container image is a read-only snapshot of a Docker-compatible container. ACR can

include both Windows and Linux images.

ACR groups images by repositories.

Use the Azure Container Registry (ACR) service with your existing container development and deployment pipelines, or

use Azure Container Registry Tasks to build container images in Azure.

High numbers of repositories and tags can impact ACR performance. Periodically delete unused registry resources as

part of your registry maintenance routine. Deleted resources can't be recovered.

Security and data protection

ACR uses encryption-at-rest for image data security. In Premium tier, ACR uses geo-replication for image data

protection. ACR stores data in the region where the registry is created, to help meet data residency compliance

requirements.

In Premium service tier, zone redundancy uses Azure availability zones to replicate your registry to a minimum of three

separate zones within a region. ACR may also store registry data in a paired region in the same geography (geo-

replication), in all regions except Brazil South and Southeast Asia where registry data is confined to the same region.

Tiers

3 tiers: basic, standard, premium (see A11-10 Pricing Plans and Tiers for details).

ACR Tasks

ACR Tasks provide cloud-based container image build automation.

ACR Tasks

By default, ACR Tasks builds images for the Linux OS and the amd64 architecture. The az acr task create CLI command

can take an optional --platform argument to build Windows images or Linux images for other architectures, using the

OS/architecture/variant format. Steps can be provided in a YAML file.

Example:

cat tasksteps.yaml | az acr task create -n helloworld -r myregistry --platform Linux/arm64/v8

Quick tasks

Build and push a container image to ACR in Azure, without needing a local Docker Engine. Think docker build, docker

push in the cloud. Using the familiar docker build format, the az acr build CLI command sends a set of files to build, to

ACR Tasks and pushes the built image to its registry upon completion. Specify -t to tag the image.

https://learn.microsoft.com/en-us/training/modules/publish-container-image-to-azure-container-registry/

Example:

az acr build -t my-image-repo/hello-world:v1 -r myregistry .

While ACR Tasks refers to a broader feature set for automated container image builds in the cloud, Quick Tasks is a

specific functionality within ACR Tasks that enables a simple, single-step build and push of a container image. Essentially

Quick Tasks is a quick way to validate your build process without complex multi-step workflows. Think of it as a basic

"build and push" operation compared to the more advanced capabilities of full ACR Tasks.

Automatically triggered tasks

Tasks can be triggered by source code updates, updates to a container's base image, or timers.

• Source code update: Trigger an ACR Tasks-created webhook, on an update to a repository in GitHub or Azure

DevOps.

• Base image update: either in your registry or in a public repo, ACR Tasks can automatically build any application

images based on it.

• Schedule: schedule a task by setting up one or more timer triggers.

Multi-step tasks

Multi-step tasks, defined in a YAML file specify individual build and push operations for container images, with each step

using the container as its execution environment.

Dockerfile

A Dockerfile is a script to build a Docker image. For example:

Base image

FROM mcr.microsoft.com/dotnet/runtime:6.0

Set working directory

WORKDIR /app

Copy the previously published app to the container's /app directory

COPY bin/publish/ .

Expose port 80 on the container

EXPOSE 80

Command to run when the container starts

CMD ["dotnet", "MyApp.dll"]

Each of these steps creates a cached container image. These temporary images are layered and presented as single

image once all steps complete.

Build and run image using Azure CLI

This example shows how to Build and run a container image by using ACR Tasks.

create a resource group

az group create --name az204-acr-rg --location <myLocation>

create a basic container registry

az acr create --resource-group az204-acr-rg \

 --name <myContainerRegistry> --sku Basic

build the image, tagged as "v1", and pushes it to your registry

az acr build --image sample/hello-world:v1 --registry <myContainerRegistry> --file Dockerfile .

To verify the results, list the repositories in your registry:

az acr repository list --name <myContainerRegistry> --output table

and list the tags:

az acr repository show-tags --name <myContainerRegistry> \

 --repository sample/hello-world --output table

Run the image:

az acr run --registry <myContainerRegistry> \

 --cmd '$Registry/sample/hello-world:v1' /dev/null

A11-8 Run container images in Azure Container Instances

https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/

Azure Container Instances (ACI) offers the fastest and simplest way to run a container in Azure. ACI is for any scenario

that can operate in isolated containers.

Benefits

• Fast start

• Easy access – expose container groups directly to the internet with an IP address and a FQDN

• Secure – Hypervisor-level security

• Confidentiality – minimum customer data is stored

• Custom sizes

• Persistent storage – mount Azure Files shares

• Cross platform – load Linux and Windows containers with same API

Multi-container Groups

The top-level resource in Azure Container Instances is the container group, a collection of containers on the same host

machine that share a lifecycle, network and storage resources. It’s similar to a Kubernetes pod. For example:

Note: container groups supported on Linux; Windows supports single container instances only.

https://learn.microsoft.com/en-us/training/modules/create-run-container-images-azure-container-instances/

Deployment

Multi-container groups can only be deployed using ARM templates or YAML. Single containers can be deployed using the

Azure CLI as well as ARM templates or YAML. YAML template is the preferred method when deploying container groups

consisting of multiple containers.

YAML Recommended when your deployment includes only container instances due to YAML

format’s concise nature.

ARM Template Recommended when you need to deploy more Azure service resources.

Resources are requested for the container group and divided equally among the containers.

Networking

Container groups share an IP address, and a port which must be exposed on the IP address and from the container, to

enable access from external clients. Since a group shares the same port, port mapping isn’t supported. Containers within

a group can reach each other via the ports that the containers have exposed, even if the ports aren’t exposed externally

on the group’s IP address.

Storage

External storage volumes are mounted within a group container, and then mapped to paths by the individual containers

in the group. Supported volumes include:

• Azure file share

• Secret

• Empty directory

• Cloned git repo

Single container example

A single container can be deployed using the AZ container create CLI command.

create a resource group

az group create --name az204-aci-rg --location <myLocation>

create and start a container

az container create --resource-group az204-aci-rg \

 --name mycontainer \

 --image mcr.microsoft.com/azuredocs/aci-helloworld \

 --ports 80 \

 --dns-name-label $DNS_NAME_LABEL --location <myLocation>

dns-name-label: a unique identifier that will be used to create a fully qualified domain name (FQDN) for your container,

allowing it to be accessed publicly on the internet; essentially, it's a custom name you assign to your container so it can

be reached using a specific address like "your-label.region.azurecontainer.io".

You can verify the container is running with the az container show CLI command to get the FDQN, and then test it by

navigating to the FDQN from a browser.

az container show --resource-group az204-aci-rg \

 --name mycontainer \

 --query "{FQDN:ipAddress.fqdn,ProvisioningState:provisioningState}" \

 --out table

Restart policy

Container instances are billed by the second for the compute resources used while the container is executing.

Containers restart by default when their processes complete. This can be overridden by setting a restart policy:

Restart policy

Always This is the default setting applied when no restart policy is specified at container

creation.

Never The containers run at most once.

OnFailure restarted only when the process terminates with a nonzero exit code. The

containers are run at least once.

When creating a single container app, you can specify the restart policy as follows:

az container create \

 --resource-group myResourceGroup \

 --name mycontainer \

 --image mycontainerimage \

 --restart-policy OnFailure

When a container’s restart policy is Never or OnFailure, the container’s status is set to Terminated.

Environment variables

Environment variables can be provided when you create the container:

az container create \

 --resource-group myResourceGroup \

 --name mycontainer2 \

 --image mycontainerimage2 \

 --environment-variables 'NumWords'='5' 'MinLength'='8'

Set a secure environment variable by specifying the secureValue property instead of the regular value. Environment

variables with secure values aren't visible in your container's properties, they can be accessed only from within the

container. For example:

apiVersion: 2018-10-01

location: eastus

name: securetest

properties:

 containers:

 - name: mycontainer

 properties:

 environmentVariables:

 - name: 'NOTSECRET'

 value: 'my-exposed-value'

 - name: 'SECRET'

 secureValue: 'my-secret-value'

 image: nginx

 osType:

 restartPolicy: Always

...file is truncated for brevity

The YAML file can then be used to deploy the container group with the following CLI command:

az container create --resource-group myResourceGroup \

 --file secure-env.yaml

File Shares

To persist state beyond the lifetime of an ACI container, you mount a volume from an external store. You can only

mount Azure Files shares to Linux containers. You can mount an Azure Files file share making it accessible to the

container via SMB protocol. Or you can use an Azure file share with Azure virtual machines. To mount an Azure file share

as a volume, specify the share and volume mount point when you create the container with az container create.

az container create \

 --resource-group $ACI_PERS_RESOURCE_GROUP \

 --name hellofiles \

 --image mcr.microsoft.com/azuredocs/aci-hellofiles \

 --dns-name-label aci-demo \

 --ports 80 \

 --azure-file-volume-account-name $ACI_PERS_STORAGE_ACCOUNT_NAME \

 --azure-file-volume-account-key $STORAGE_KEY \

 --azure-file-volume-share-name $ACI_PERS_SHARE_NAME \

 --azure-file-volume-mount-path /aci/logs/

multiple volumes: deploy using an ARM template or YAML file. There is a volumes array and a volume mounts array. For

example, ARM Template contains a definition of the volumes:

"volumes": [{

 "name": "myvolume1",

 "azureFile": {

 "shareName": "share1",

 "storageAccountName": "myStore",

 "storageAccountKey": "<key>"

 }

},

{

 "name": "myvolume2",

 "azureFile": {

 "shareName": "share2",

 "storageAccountName": "myStore",

 "storageAccountKey": "<key>"

 }

}]

And then in the container properties section:

"volumeMounts": [{

 "name": "myvolume1",

 "mountPath": "/mnt/share1/"

},

{

 "name": "myvolume2",

 "mountPath": "/mnt/share2/"

}]

In this example, the volume mounts connect to the volumes at runtime using the name property, myvolume1.

A11-9 Develop for Azure Cache for Redis

https://learn.microsoft.com/en-us/training/modules/develop-for-azure-cache-for-redis/

Azure Cache for Redis (REmote DIctionary Server) provides an in-memory data store that improves the performance and

scalability of an application that uses backend data stores. Redis provides a low-latency and high-throughput data

storage solution.

Azure Cache for Redis offers both the Redis open-source (OSS Redis) and a commercial product from Redis Labs (Redis

Enterprise) as a managed service.

Redis application architecture patterns:

Data cache

(cache-aside pattern)

Content cache Many web pages are generated from templates that use static content such as headers,

footers, banners. Using an in-memory cache provides quick access to static content

compared to backend datastores.

Session store User sessions can be stored in Redis Cache to maintain application state between browser

sessions (for example: shopping cart). Traditionally this is done with a session cookie as a

key to query the data in a database. Storing the data in an in-memory cache, is faster than

interacting with a full relational database.

Job and message queuing Applications often add tasks to a queue when the operations associated with the request

take time to execute. Longer running operations are queued to be processed in sequence,

often by another server. This method of deferring work is called task queuing.

Distributed transactions A transaction against a back-end data store runs as a single atomic operation. Redis cache

allows you to execute a batch of commands as a single transaction.

Redis Service tiers: basic, standard, premium, enterprise, enterprise flash (see A11-10 Pricing Plans and Tiers for details).

Redis Cache Configuration Parameters:

Name needs a globally unique; used to generate a public-facing URL; 1 to 63 chars;

numbers, letters, and '-'; can't start or end with the '-'; consecutive '-' not

allowed

Resource Group

Location place your cache instance close to where the application is running

https://learn.microsoft.com/en-us/training/modules/develop-for-azure-cache-for-redis/

Pricing Tier (sku) determines size, performance, and features

Cache Level (vm-size) C0, C1, C2, C3, C4, C5, C6, P1, P2, P3, P4

Clustering Support Premium, Enterprise, and Enterprise Flash tiers – cost incurred is cost of the

original node, multiplied by the number of shards (max 10 shards)

Redis CLI:

ping Ping the server. Returns PONG.

set [key] [value] Sets a key/value in the cache. Returns "OK" on success.

get [key] Gets a value from the cache.

exists [key] Returns '1' if the key exists in the cache, '0' if it doesn't.

type [key] Returns the type associated to the value for the given key.

incr [key] Increment the given value associated with key by '1'. The value must be an

integer or double value. Returns the new value.

incrby [key] [amount] Increment the given value associated with key by the specified amount. The

value must be an integer or double value. Returns the new value.

del [key] Deletes the value associated with the key.

flushdb Delete all keys and values in the database.

EXPIRE sets the timeout of a key

TTL returns the remaining time a key has to live

PERSIST makes a key never expire

CLI Examples:

> set somekey somevalue

 OK

> get somekey

 "somevalue"

> exists somekey

 (string) 1

> del somekey

 (string) 1

> exists somekey

 (string) 0

> set counter 100

 OK

> expire counter 5

 (integer) 1

> get counter

 100

... wait ...

> get counter

 (nil)

Note: the expire time resolution (clock refresh time) is always 1 millisecond.

Accessing a Redis cache from a client

Clients need the host name, port, and an access key for the cache. Azure also offers a connection string for some Redis

clients that bundles this data together into a single string. For example:

[cache-name].redis.cache.windows.net:6380,password=[password-here],ssl=True,abortConnect=False

in this example

• host name: [cache-name].redis.cache.windows.net

• port: 6380

• access key: password-here

The abortConnect=False parameter allows a connection to be created even if the server is unavailable

The host name is created using the name of the cache, for example sportsresults.redis.cache.windows.net. There are

two access keys created: primary and secondary, in case you need to change the primary key. You can switch all of your

clients to the secondary key, and regenerate the primary key.

Interact with Redis using .NET

A popular Redis client for the .NET language is StackExchange.Redis available through NuGet.

The main connection object in StackExchange.Redis is the ConnectionMultiplexer class. You create a

ConnectionMultiplexer instance using the static ConnectionMultiplexer.Connect or

ConnectionMultiplexer.ConnectAsync method, passing in either a connection string or a ConfigurationOptions object.

For example:

using StackExchange.Redis;

...

ConnectionMultiplexer redisConnection = ConnectionMultiplexer.Connect(connectionString);

The ConnectionMultiplexer allows you to:

• Access a Redis Database.

• Make use of the publisher/subscriber features of Redis.

• Access an individual server for maintenance or monitoring purposes.

Accessing a Redis database

The IDatabase type represents the Redis database.

IDatabase db = redisConnection.GetDatabase();

Tip:

the IDatabase object is a lightweight object, and does not need to be stored. Only the ConnectionMultiplexer needs to

be kept alive. All IDatabase object methods have synchronous and asynchronous versions that return Task objects to

make them compatible with the async and await keywords.

Accessing a key/value in the cache

bool isSet = db.StringSet("favorite:flavor", "i-love-rocky-road");

string value = db.StringGet("favorite:flavor");

Console.WriteLine(value); // displays: i-love-rocky-road

Getting and Setting binary values

There are implicit conversion operators to work with byte[] types so keys and values are binary safe.

StackExchange.Redis represents keys and values using the RedisKey and RedisValue type, which have implicit

conversions for string and byte[], allowing both text and binary keys to be used without any complication.

byte[] key = ...;

byte[] value = ...;

db.StringSet(key, value);

byte[] key = ...;

byte[] value = db.StringGet(key);

Other IDatabase common operations: CreateBatch, CreateTransaction, KeyDelete, KeyExists, KeyExpire, KeyRename,

KeyTimeToLive, KeyType.

The IDatabase object also has an Execute and ExecuteAsync method to pass Redis commands to the server. For example:

var result = db.Execute("ping");

Console.WriteLine(result.ToString()); // displays: "PONG"

db.Execute returns a RedisResult object, a data holder that includes two properties:

• Resp2Type a string indicating the type of the result - STRING, INTEGER, etc.

• IsNull a true/false value to detect when the result is null.

You can then use ToString() on the RedisResult to get the actual return value.

more complex values

You can cache object graphs by serializing them to a textual format - typically XML or JSON, using NewtonSoft library or

similar.

Cleaning up the connection

When no longer needed, dispose closes all connections and shuts down the communication to the server.

redisConnection.Dispose();

redisConnection = null;

A11-10 Pricing Plans and Tiers

Azure Functions

hosting options (plans)

Consumption

default

pay-as-you-go billing(1);

cannot connect to virtual networks(2);

Flex Consumption

(preview)

pay-as-you-go billing(1);

Linux-based plan with high scalability and virtual networking;

reduces cold starts with pre-provisioned instances(3);

Premium billing based on core seconds, memory, number of instances – most predictable pricing;

more powerful; uses prewarmed workers(4);

Dedicated runs within an App Service Plan at regular plan rates; secure network access;

optional (App Service Environment) ASE provides fully isolated and dedicated hosting

plan, high memory usage, high scale;

Container Apps billing based on container app rates;

fully managed environment hosted by Azure Container Apps;

notes:

 (1) pay-as-you-go billing – only pay when functions are running;

 (2) only the consumption plan cannot connect to virtual networks;

 (3) pre-provisioned instances are “always ready” instances that are already allocated and provisioned in advance;

 (4) pre-warmed workers are a subset of pre-provisioned instances that are warmed up and can respond instantly;

Function app timeout duration (functionTimeout property in host.json)

• consumption plan: default 5 minutes, max 10 minutes;

• all other plans: default 30 minutes, max unlimited.

Function app scaling

• consumption: event driven scaling; each instance is limited to 1.5 GB of memory and one CPU;

• flex consumption: per function scaling, more deterministic way of scaling;

• premium: event driven scaling; automatic scaling with pre-warmed workers (no delay);

• dedicated: manual/autoscaling;

• container apps: event driven scaling.

notes:

• event driven scaling – scales resources by adding more instances based on the number of events that trigger a function

• per function scaling – each individual function within an application is scaled independently based on its own resource usage and demand, meaning that

different functions can scale up or down at different rates depending on their specific workload, rather than scaling the entire application as a single unit.

• manual/autoscaling – either manually adjust the number of function instances running based on your needs, or to automatically scale them up or down

depending on the current workload, using predefined rules that monitor metrics like CPU usage or event volume, allowing your application to adapt to

varying demand without manual intervention.

Function app scaling max instances

• consumption: 200 (Windows), 100 (Linux);

• flex consumption: limited only by memory available in region;

• premium: 100;

• dedicated: 100;

• container apps: 300.

Azure Key Vault

Standard encrypts with a software key;

Premium encrypts with a software key, or HSM-protected keys;

Azure App Configuration

Free non-production use cases for evaluations;

Standard medium-volume production use cases;

Premium high-volume or enterprise production use cases;

Azure Container Registry (ACR)

Basic cost-optimized entry point for developers;

same programmatic capabilities as Standard and Premium, low storage

and image throughput;

lower usage scenarios;

Standard same capabilities as Basic, with increased storage and throughput;

most production scenarios;

Premium highest amount of storage and throughput;

adds geo-replication for managing a single registry across multiple

regions; content trust for image tag signing; private link with private

endpoints to restrict access to the registry;

high-volume scenarios;

Azure Cache for Redis

Basic OSS Redis cache on a single VM;

no SLA; for noncritical workloads (dev/test);

Standard OSS Redis cache on two VMs in a replicated configuration;

Premium OSS Redis cache on more powerful VMs;

high-performance;

Enterprise powered by Redis Enterprise software;

even higher availability than the Premium tier;

Enterprise Flash powered by Redis Enterprise software;

cost-effective large caches; reduces overall memory cost;

Some Redis Modules are only available with the Enterprise tier. You can’t manually load Redis modules into Azure Cache

for Redis, and updating modules version is also not possible. If you want to use these modules, you have to scale up to

the Enterprise tier:

• RediSearch module

• RedisBloom module

• RedisTimeSeries module

• RedisJSON module

A11-11 Authentication and authorization notes

 (see A11-11 Authentication and authorization notes for details)

Azure Function Apps – authentication/authorization

Connecting Functions to Azure services: As a security best practice, Azure Functions uses the application settings

functionality of Azure App Service to store secrets required to connect to other services. Connection details are

referenced by names from the configuration provider. For triggers and bindings that require a connection property, use

the application setting name instead of the actual connection string. You can't configure a binding directly with a

connection string or key.

Some Azure Functions connections use a managed identity instead of a secret. The system-assigned identity is used by

default, although a user-assigned identity can be specified with the Function’s credential and clientID properties.

Azure Files doesn't support using managed identity when accessing the file share. Instead, function apps use the

WEBSITE_AZUREFILESCONNECTIONSTRING and WEBSITE_CONTENTSHARE settings.

When run in other contexts, such as local development, your developer identity is used instead. Getting the permissions

to perform the intended actions is typically done by assigning a role in RBAC, or in an access policy.

Where possible, adhere to the principle of least privilege, granting the identity only required privileges.

Azure Key Vault – authentication/authorization

Authentication to key vault is through Microsoft Entra ID. Authorization is with RBAC or access policy.

RBAC management plane and data plane

access policy data plane only

Authenticating an application’s security principle to access Key Vault is done with Microsoft Entra ID.

4. Managed identities: Recommended approach. You can assign identities to Azure resources that need to access

key vault. Azure then automatically manages authentication behind the scenes.

5. Service principal and certificate: Not recommended because it’s hard to rotate the certificate.

6. Service principle and secret: Not recommended because it’s hard to rotate the secret.

with managed identity: Enable a system-assigned managed identity for the application. With managed identity, Azure

internally manages the application's service principal and automatically manages authentication behind the scenes.

without managed identity: If you can't use managed identity, you instead register the application with your Microsoft

Entra tenant, creating a second application object that identifies the app across all tenants.

in application code: Authentication to Key Vault in application code is done with an Azure Identity client library such as

Azure Identity SDK for .NET, Python, Java, or JavaScript.

with REST: Access tokens must be sent to the service using the Bearer HTTP Authorization header.

For example:

PUT /keys/MYKEY?api-version=<api_version> HTTP/1.1

Authorization: Bearer <access_token>

On failure an HTTP 401 error is returned to the client and will include the WWW-Authenticate header.

401 Not Authorized

WWW-Authenticate: Bearer authorization="…", resource="…"

In this example:

 authorization is the OAuth2 authorization service that may be used to obtain an access token,

 resource is the name of the resource to use when making the OAuth2 authorization request.

Azure App Configuration – authentication/authorization

A managed identity from Microsoft Entra ID allows Azure App Configuration to access other Microsoft Entra ID-

protected resources, such as Azure Key Vault. The identity is managed by the Azure platform. There are two types of

managed identities:

• A system-assigned identity. A configuration store can only have one system-assigned identity.

• A user-assigned identity. A configuration store can have multiple user-assigned identities.

To add a system-assigned managed identity to an existing configuration store:

az appconfig identity assign \

 --name myTestAppConfigStore \

 --resource-group myResourceGroup

To add a user-assigned managed identity to an existing configuration store, first create the identity, and then assign the

identity’s resource identifier to the configuration store:

$MYPATH = /subscriptions/[subscription id]/resourcegroups/myResourceGroup/providers/Microsoft.ManagedIdentity/userAssignedIdentities

$MYID = myUserAssignedIdentity

az identity create --resource-group myResourceGroup --name $MYID

az appconfig identity assign --name myTestAppConfigStore \

 --resource-group myResourceGroup \

 --identities $MYPATH/$MYID

Azure Container Apps – authentication/authorization

Azure Container Apps provides built-in authentication and authorization, providing out-of-the-box authentication with

federated identity providers that manage the user identities and authentication flow for you. This feature should only be

used with HTTPS.

Configure your container app for authentication from your container app's ingress configuration:

• Ensure allowInsecure is disabled.

• set Restrict access setting to Require authentication to restrict access to authenticated users.

• set Restrict access setting to Allow unauthenticated to not restrict access.

The following federated identity providers are available.

• Microsoft Identity Platform

• Facebook

• GitHub

• Google

• Twitter

• Any OpenID Connect provider

Their sign-in endpoints are /.auth/login/<providerName>

The authentication and authorization middleware component runs as a sidecar container in your application. When

enabled, every incoming HTTP request passes through the security layer before being handled by your application. The

middleware handles:

• Authenticating users and clients with an identity provider

• Managing the authenticated session

• Injecting identity information into HTTP request headers

The module runs in a separate container, isolated from your application code, so the security container doesn't run in-

process, and no direct integration with specific language frameworks is possible. Authentication information your app

needs is provided in request headers.

The authentication flow depends on whether the container app uses the provider SDK.

• Without provider SDK (server flow): The application delegates federated sign-in by presenting the provider's

sign-in page to the user. This is typically the case with browser apps.

• With provider SDK (client flow): The application signs users in to the provider manually and then submits the

authentication token to Container Apps. This is typical for browser-less apps that don't present the provider's

sign-in page to the user. For example, a native mobile app.

A11–REFERENCES

https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar

https://learn.microsoft.com/en-us/azure/bot-service/bot-service-resources-app-insights-keys?view=azure-bot-service-

4.0

https://learn.microsoft.com/en-us/azure/azure-app-configuration/concept-point-time-snapshot?tabs=azure-portal

https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale

https://learn.microsoft.com/training/paths/az-204-implement-secure-cloud-solutions/

https://learn.microsoft.com/en-us/training/modules/implement-managed-identities/

https://learn.microsoft.com/en-us/cli/azure/acr/task?view=azure-cli-latest#az-acr-task-create

https://learn.microsoft.com/en-us/cli/azure/acr?view=azure-cli-latest#az-acr-build

https://learn.microsoft.com/en-us/azure/key-vault/general/about-keys-secrets-certificates

https://learn.microsoft.com/en-us/azure/azure-functions/event-driven-scaling?tabs=azure-cli

https://learn.microsoft.com/en-us/azure/azure-functions/dedicated-plan

https://learn.microsoft.com/en-us/azure/azure-monitor/app/data-model-complete

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-redis-modules

https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://learn.microsoft.com/en-us/azure/bot-service/bot-service-resources-app-insights-keys?view=azure-bot-service-4.0
https://learn.microsoft.com/en-us/azure/bot-service/bot-service-resources-app-insights-keys?view=azure-bot-service-4.0
https://learn.microsoft.com/en-us/azure/azure-app-configuration/concept-point-time-snapshot?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://learn.microsoft.com/training/paths/az-204-implement-secure-cloud-solutions/
https://learn.microsoft.com/en-us/training/modules/implement-managed-identities/
https://learn.microsoft.com/en-us/cli/azure/acr/task?view=azure-cli-latest#az-acr-task-create
https://learn.microsoft.com/en-us/cli/azure/acr?view=azure-cli-latest#az-acr-build
https://learn.microsoft.com/en-us/azure/key-vault/general/about-keys-secrets-certificates
https://learn.microsoft.com/en-us/azure/azure-functions/event-driven-scaling?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/azure-functions/dedicated-plan
https://learn.microsoft.com/en-us/azure/azure-monitor/app/data-model-complete
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-redis-modules

